• Skip to main content
  • Skip to primary sidebar

Complex Materials Theory Group

  • home
  • People
    • Salvatore Torquato
    • Group Members
    • Alumni
  • Research
    • Biophysics
    • Multiscale Order in the Primes
    • Disordered Packings
    • High Dimensional Packings
    • Hyperuniform Materials
    • Multifunctional Materials
    • Self Assembly Theory via Inverse Methods
    • Unusual Ground States
    • Maximally Dense/Densest Local Packings
      • Maximally Dense Packings
      • Densest Local Packings
    • Cancer Modeling
  • Publications
    • Journal Articles
    • Book: Random Heterogeneous Materials
  • News
  • Links and Codes
  • Biophysics

“Generation and structural characterization of Debye random media” is Published in Physical Review E

October 13, 2020 By ms87

Read the full paper: here
Link to the journal: here

In their seminal paper on scattering by an inhomogeneous solid, Debye and coworkers proposed a simple exponentially decaying function for the two-point correlation function of an idealized class of two-phase random media. Such Debye random media, which have been shown to be realizable, are singularly distinct from all other models of two-phase media in that they are entirely defined by their one- and two-point correlation functions. To our knowledge, there has been no determination of other microstructural descriptors of Debye random media. In this paper, we generate Debye random media in two dimensions using an accelerated Yeong-Torquato construction algorithm. We then ascertain microstructural descriptors of the constructed media, including their surface correlation functions, pore-size distributions, lineal-path function, and chord-length probability density function. Accurate semianalytic and empirical formulas for these descriptors are devised. We compare our results for Debye random media to those of other popular models (overlapping disks and equilibrium hard disks) and find that the former model possesses a wider spectrum of hole sizes, including a substantial fraction of large holes. Our algorithm can be applied to generate other models defined by their two-point correlation functions, and their other microstructural descriptors can be determined and analyzed by the procedures laid out here.

Filed Under: News

Primary Sidebar

Contact

Salvatore Torquato
torquato@princeton.edu
Frick Laboratory, 160
609-258-3341
CV

Faculty Assistant:
Kuri Chacko
chacko@princeton.edu
Frick Laboratory, 389
609-258-3924

The Torquato Group • Salvatore Torquato • Department of Chemistry, Princeton University
Frick Chemistry Laboratory - Room 160 • Princeton, NJ 08544 • torquato@princeton.edu • phone: (609) 258-3341