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Abstract

Disordered stealthy hyperuniform two-phase media are a special subset of hyperuniform
structures with novel physical properties due to their hybrid crystal-liquid nature. We have
previously shown that the rapidly converging strong-contrast expansion of a linear fractional
form of the effective dynamic dielectric constant &, (k;,w) (Torquato and Kim 2021 Phys. Rev.
X 11 021002) leads to accurate approximations for both hyperuniform and nonhyperuniform
two-phase composite media when truncated at the two-point level for distinctly different types
of microstructural symmetries in three dimensions. In this paper, we further elucidate the
extraordinary optical and transport properties of disordered stealthy hyperuniform media.
Among other results, we provide detailed proofs that stealthy hyperuniform layered and
transversely isotropic media are perfectly transparent (i.e. no Anderson localization, in
principle) within finite wavenumber intervals through the third-order terms. Remarkably, these
results imply that there can be no Anderson localization within the predicted perfect
transparency interval in stealthy hyperuniform layered and transversely isotropic media in
practice because the localization length (associated with only possibly negligibly small
higher-order contributions) should be very large compared to any practically large sample size.
We further contrast and compare the extraordinary physical properties of stealthy hyperuniform
two-phase layered, transversely isotropic media, and fully three-dimensional isotropic media to
other model nonstealthy microstructures, including their attenuation characteristics, as measured
by the imaginary part of €,(k;,w), and transport properties, as measured by the time-dependent
diffusion spreadability S(¢). We demonstrate that there are cross-property relations between
them, namely, we quantify how the imaginary parts of €.(k;,w) and the spreadability at long
times are positively correlated as the structures span from nonhyperuniform, nonstealthy
hyperuniform, and stealthy hyperuniform media. It will also be useful to establish cross-property
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relations for stealthy hyperuniform media for other wave phenomena (e.g. elastodynamics) as
well as other transport properties. Cross-property relations are generally useful because they
enable one to estimate one property, given a measurement of another property.

Keywords: hyperuniformity, optical and transport properties, disordered composite media

1. Introduction

Hyperuniform many-body systems and materials are charac-
terized by an anomalous suppression of density fluctuations
at large length scales compared to typical disordered systems
[1]. The broad importance of the hyperuniformity concept
for statistical physics, condensed matter physics and materi-
als science was introduced two decades ago in an investiga-
tion that focused on fundamental theoretical issues pertaining
to local density fluctuations, including how it provides a uni-
fied means to classify and categorize crystals, quasicrystals,
and special disordered point configurations [1]. A hyperuni-
form (or superhomogeneous [2]) many-particle system in d-
dimensional Euclidean space R? possesses a structure factor
S(Kk) (proportional to the scattering intensity) that vanishes as
the wavenumber k = |Kk| tends to zero, i.e.

|lHgos(k) =0. 1

Equivalently, a hyperuniform system is one in which the num-
ber variance of particles within a spherical observation win-
dow of radius R, denoted by cr,%(R), grows, for large R, more
slowly than the window volume, i.e. R? [1]. Typical dis-
ordered systems, such as ordinary gases and liquids, have the
expected asymptotic volume scaling, i.e. 03 (R) ~ R4. On the
other hand, all perfect crystals and many perfect quasicrys-
tals are hyperuniform with the surface-area scaling Jﬁ (R) ~
R, Disordered hyperuniform systems are exotic amorph-
ous states of matter that lie between a crystal and liquid:
they can behave like perfect crystals in the way they sup-
press large-scale density fluctuations and yet have character-
istics of liquids or glasses at small length scales such that
they are statistically isotropic with no Bragg peaks. Thus, dis-
ordered hyperuniform systems can be thought of as having a
hidden order (see figure 2 of [3] for a vivid example), and
their hybrid crystal-liquid nature can endow them with novel
physical properties, as described below. It is noteworthy that
the hyperuniformity concept extends our traditional notions of
long-range order to not only include crystals and quasicrystals
but exotic disordered states of matter [3].

Two decades ago, only a few examples of disordered hyper-
uniform systems and their manifestations were known [1, 2].
It has come to be discovered that these special disordered sys-
tems arise in a variety of contexts, across the physical, mater-
ials, mathematical, and biological sciences, including dis-
ordered hard-sphere plasmas [3-5], classical disordered (non-
crystalline) ground states [6—8], maximally random jammed
hard-particle packings [9, 10], jammed bidisperse emulsions
[11], jammed thermal colloidal packings [12, 13], jammed
athermal soft-sphere models of granular media [14, 15],

nonequilibrium phase transitions [16-24], dynamical pro-
cesses in ultracold atoms [25], avian photoreceptor patterns
[26], receptor organization in the immune system [27], veget-
ation patterns in arid ecosystems [28], certain quantum ground
states (both fermionic and bosonic) [29, 30], vortex structures
in superconductors [31], ‘perfect’ glasses [32], the distribution
of the nontrivial zeros of the Riemann zeta function [29, 33],
and the eigenvalues of various random matrices [3, 29, 34-36].
Thus, it is apparent that disordered hyperuniform states of mat-
ter can exist as both equilibrium and nonequilibrium phases
and come in classical and quantum-mechanical varieties.

The fundamental and practical importance of the hyper-
uniformity concept in the context of condensed matter phys-
ics began to emerge when it was demonstrated that classical
many-particle systems with certain long-ranged pair potentials
could counterintuitively freeze into disordered hyperuniform
states at absolute zero with singular scattering patterns, such
as the stealthy hyperuniform one depicted in the right panel
of figure 1 [6, 7]. Stealthy hyperuniform many-particle sys-
tems possess a structure factor that is zero not only at infin-
ite wavelengths but also vanishes for a range of wavenumbers
around the origin, i.e.

S(k)=0 for 0 < k| <K, 2)
implying that there is no single scattering down to inter-
mediate wavelengths of the order of 27/K [6, 7]. Mapping
such particle configurations to networks enabled the discov-
ery of the first disordered dielectric networks to have large
isotropic photonic band gaps comparable in size to photonic
crystals [38]. This computational study led to the design and
fabrication of disordered cellular solids with the predicted
photonic band-gap characteristics for the microwave regime,
enabling unprecedented free-form waveguide geometries that
are robust to defects not possible with crystalline structures
[39]. Afterward, stealthy hyperuniform materials were demon-
strated to possess singular wave propagation, transport,
and elasticity characteristics, including wave transparency
[40—47], tunable localization and diffusive regimes [41, 48,
49], enhanced absorption of waves [50], enhanced solar cell
efficiency [51], phononic properties [52—54], Luneberg lenses
with reduced backscattering [55], extraordinary phased arrays
[56, 57], optimal sampling array of three-dimensional (3D)
ultrasound imaging [58], high quality factor optical cavity
[59], and network materials with nearly optimal effective
electrical conductivities and elastic moduli [60]. It has been
noted that the novel physical properties of disordered iso-
tropic stealthy hyperuniform materials is due to their hybrid
liquid-crystal nature, including the fact that they cannot toler-
ate arbitrarily large holes in the infinite-volume limit, which is
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Figure 1. Left: Scattering pattern for a crystal. Right: Scattering pattern for a disordered ‘stealthy’ hyperuniform material defined by
relation (2). Scattering intensity increases from zero (blue color) to the highest value (red color). Notice that apart from forward scattering,
there is a circular region around the origin in which there is no scattering, a singularly exotic situation for an amorphous state of matter.
Reprinted (figure) with permission from [37], Copyright (2016) by the American Physical Society.

a property that is also possessed by systems with long-range
order, such as crystals and quasicrystals [3].

The hyperuniformity concept was generalized to describe
other contexts, including two-phase heterogeneous media
[61, 62], and random scalar and vector fields [37]. Two-
phase media, of central interest in this paper, are ubiquitous;
examples include porous media, composites, cellular solids,
biological media, colloids, granular media, foams, and poly-
mer blends [63, 64]. Here, the phase volume fraction fluctu-
ates within a spherical window of radius R, which is useful to
describe by the volume-fraction variance o(R). For ordinary
disordered two-phase media, the variance 0'5 (R) goes to zero
like R—¢ for large R. By contrast, for hyperuniform disordered
two-phase media, 03 (R) goes to zero faster than the inverse of
the window volume in the large-R asymptotic limit, i.e. faster
than R~ which is equivalent to the vanishing of the spectral
density x, (k) (defined in section 2) in the infinite-wavelength
limit, i.e.

‘ 3510 X, (k) =0. 3)

Similar to the instance of hyperuniform point configurations
[1, 3, 61], three different large-R scaling regimes arise when
the spectral density goes to zero with the power-law form

Xy (k) ~ [K|%; ()
specifically,
R—(d+D), a>1 (Class])
o2 (R) ~ ¢ RV InR, a=1 (ClassII) 5)
R~ (d+e) 0<a<1 (ClassIII),

where the exponent « is a positive constant. Classes I and
IIT are the strongest and weakest forms of hyperuniformity,
respectively. Stealthy hyperuniform media, the major focus of

this paper, are also of class I and are defined to be those that
possess zero-scattering intensity for a range of wavevectors in
the vicinity of the origin [62], i.e.

Xy (k) =0

Examples of stealthy hyperuniform media are periodic pack-
ings of spheres as well as unusual disordered sphere packings
derived from stealthy point patterns [62, 65]. The reader is
referred to [66] for a review of the extraordinary multifunc-
tional characteristics of disordered hyperuniform media.

On the other hand, for any nonhyperuniform two-
phase medium, it is simple to demonstrate that the local
volume-fraction variance has the following large-R scaling
behaviors [67]:

for0 < |k| < K. (6)

a=0
—d < a <0 (antihyperuniform).

0% (R) ~ R, (typical nonhyperuniform)
v R™ (d+a)

(N

For a ‘typical” nonhyperuniform system, X, (0) is bounded [3].
In antihyperuniform systems, X, (0) is unbounded, i.e.

dim X (k) = +o0, ®)
and hence are diametrically opposite to hyperuniform systems.
Antihyperuniform systems include systems at thermal critical
points (e.g. liquid-vapor and magnetic critical points) [68, 69],
fractals [70], disordered non-fractals [3], and certain substitu-
tion tilings [71].

In this paper, we further contrast and compare the
extraordinary physical properties of stealthy hyperuniform
two-phase layered, transversely isotropic media and fully 3D
isotropic media to other model microstructures, including the
optical characteristics as measured by the effective dynamic
dielectric constant, and transport properties, as measured by
the time-dependent diffusion spreadability. We also show, for
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Figure 2. This schematic illustrates how electric waves propagate through a 2D stealthy hyperuniform medium consisting of identical disks
(green circles) of dielectric constant €, embedded in the matrix phase of dielectric constant £; within a perfect transparency interval. The
upper panel depicts the spatial distribution of the electric field inside the sample as the wave travels from the left to the right, assuming

€2 > 1. Blue and red colors represent the regions where the electric field becomes positive and negative, respectively. The lower panel
depicts the average electric field as a function of the propagation distance. Importantly, the electric field is a perfect sine wave, implying that

the wave can propagate indefinitely without loss.
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Figure 3. For purposes of illustration, this schematic shows diffusion spreadability at different times for the special case in which phase 2 is
comprised of a spatial distribution of particles. The left panel (a) depicts the uniform concentration of the solute species within phase 2
(dark blue regions) at time ¢ = 0. The middle panel (b) depicts the spreading of diffusion information at short times. The right panel (c)
depicts the uniform concentration of the solute species throughout both phases (light blue region) in the infinite-time limit. The behavior of
the spreadability S(#) as a function of time is intimately related to the underlying microstructure. Reprinted (figure) with permission from

[82], Copyright (2021) by the American Physical Society.

the first time, that there are cross-property relations between
the attenuation characteristics (imaginary part of the dielectric
constant) and the spreadability. (Cross-property relations have
been profitably used to link seemingly disparate physical prop-
erties to one another [42, 63, 72-81].) For these purposes, it is
instructive to briefly review the strong-contrast formalism for
the effective dielectric constant and the spreadability concept
[82], as described immediately below.

We have derived exact nonlocal strong-contrast expansions
of the effective dynamic dielectric constant tensor &, (k;,w)
that treat general 3D two-phase composite microstructures
[43]. These expansions are rational functions of the effect-
ive dielectric constant tensor e.(k;,w), the terms of which
depend on the microstructure via functionals of the n-point
correlation functions S,(,i) (X1,...,x,) for all n (see section 2)
and exactly treat multiple scattering to all orders beyond
the long-wavelength regime (i.e. 0 < |k;|£ < 1). Due to the
rapid convergence of the strong-contrast expansions [43, 44],
their truncations at low orders yield highly accurate estimates
of e,(ky,w) suited for various microstructural symmetries,
implying that this resulting formula very accurately approx-
imates multiple scattering through all orders. Specifically,
we previously showed that second-order truncations, which

depend on the microstructure via functionals involving the
spectral density x,(k), already provide accurate approxim-
ations of €,(ky,w) beyond the long-wavelength regime for
transverse electric (TE) polarization in transversely isotropic
media [43] and transverse polarizations in layered [44] and
fully 3D isotropic media [43]. Among other results, we pre-
dicted that stealthy hyperuniform two-phase dielectric com-
posites possess the perfect transparency intervals [43, 44,
83]. As illustrated in figure 2, within such transparency inter-
vals, the sinusoidal electric waves can propagate indefinitely
without decaying (i.e. no Anderson localization [84—89], in
principle).

The diffusion spreadability, developed recently by
Torquato [82], is a dynamical probe that directly links the
time-dependent diffusive transport with the microstructure of
heterogeneous media across length scales. Here, one investig-
ates the time-dependent problem of mass transfer of a solute
in a two-phase medium where all of the solute is initially
contained in phase 2, and it is assumed that the solute has
the same diffusion coefficient D in each phase. The spread-
ability S(¢) is defined as the total solute present in phase
1 at time #; see figure 3 for a schematic that shows diffu-
sion spreadability at different times for the very special case,



J. Phys.: Condens. Matter 36 (2024) 225701

J Kim and S Torquato

for purposes of illustration, in which phase 2 consists of a
spatial distribution of particles. For two different microstruc-
tures at some time 7, the one with the larger value of S(f)
spreads diffusion information more rapidly [82]. Torquato
showed that the spreadability is exactly determined by the
spectral density x, (k) and its small-, intermediate-, and long-
time behaviors of S(¢) are directly determined by the small-,
intermediate-, and large-scale structural characteristics of the
two-phase medium. Notably, the spreadability of hyperuni-
form media always approaches their long-time asymptotic
behaviors substantially faster than those in nonhyperuniform
ones. Remarkably, disordered stealthy hyperuniform media
approach their long-time asymptotic behaviors exponentially
faster among any hyperuniform variety [82]; see section 2.2
for relevant formulas and more detail.

Among other results, we further study their transpar-
ency characteristics for different microstructural symmetries
(section 6) as well as provide detailed proofs that stealthy
hyperuniform layered and transversely isotropic media are
perfectly transparent (i.e. no Anderson localization, in prin-
ciple) within finite wavenumber intervals through the third-
order terms; see section 5 and appendix B. Remarkably, these
results imply that there can be no Anderson localization within
the predicted perfect transparency interval in stealthy hyper-
uniform layered and transversely isotropic media in practice
because the localization length (associated with only possibly
negligibly small higher-order contributions) should be very
large compared to any practically large sample size.

We further contrast and compare the extraordinary physical
properties of 3D stealthy hyperuniform two-phase media with
various symmetries (layered, transversely isotropic media,
and fully 3D isotropic media) to other model nonstealthy
microstructures, including their attenuation characteristics, as
measured by the imaginary part of &,(k;,w), and transport
properties, as measured by the time-dependent diffusion
spreadability S(7). Specifically, for layered media, we con-
sider two prototypical nonhyperuniform models: Debye ran-
dom media and equilibrium hard rods in a matrix; and two
hyperuniform ones: nonstealthy hyperuniform polydisperse
packings in a matrix and stealthy hyperuniform packings in
a matrix (see section 3)°. For transversely isotropic and fully
3D isotropic media, we study the two models that attenuate the
most and least, i.e. Debye random media and stealthy hyper-
uniform ones, respectively (see section 3)°.

For all models, we estimate the imaginary part of €, (k;,w)
using the second-order strong-contrast formulas presented in
section 4. In section 5, we elaborate on the perfect transpar-
ency intervals of stealthy hyperuniform media predicted by

5 Transport of waves and mass in layered and transversely isotropic media can
be rigorously considered to be those transporting in one-dimensional (d = 1)
and two-dimensional (d = 2) systems, and so we sometimes refer to them as
1D and 2D media, respectively.

6 In the present work, we focus on the imaginary parts of the effective dielec-
tric constants since their behaviors, as opposed to the real parts, are highly
sensitive to the microstructures. The reader is referred to [43] for estimates of
the real parts as a function of the wavenumber of various hyperuniform and
nonhyperuniform models.

the second-order formulas for all symmetries considered here,
including proofs for certain cases of the same transparency
intervals through the third-order terms in the strong-contrast
expansion. We present results for the attenuation characterist-
ics for all of our models considered here in section 6.1. We
also provide in section 6.2 comparisons of the spreadability as
a function of time for all of our models. In section 6.3, we
demonstrate that there are cross-property relations between
Im[e, (k)] and S(¢), namely, we quantify how the imagin-
ary parts of the dielectric and the spreadability at long times
are positively correlated as the structures span from non-
hyperuniform, nonstealthy hyperuniform and stealthy hyper-
uniform media. We utilize the inverse of specific surface
(i.e. the mean interface area per volume) s—1, as a natural
characteristic inhomogeneity length scale ¢ to scale distance
or wavenumbers in order to compare properties of different
models of two-phase media, as discussed in [90]. In section 7,
we discuss our results and future avenues of research.

2. Definitions and background

2.1 Two-phase media

A two-phase random medium is a domain of space V C R? of
volume V that is partitioned into two disjoint regions that make
up V: a phase 1 region V; with volume fraction ¢; and a phase
2 region V, with volume fraction ¢, [63].

2.1.1. n-Point correlation functions. = The phase indicator
function Z)(x) for a given realization is defined as

i ’ Vi>
70) (x) = {0 : ; . ©)

The two-phase medium is fully statistically characterized

by the n-point correlation s (x1,X2,...,X,) associated with
phase i defined by [63]

S (X1,%a, .. %) = <I<f> (x)Z (x5)---Z (x,1)> (10)

for all n > 1, where angular brackets denote an ensemble
average and X;,Xp,...,X, are position vectors. The function
S,(f) (x1,X2,...,X,) can also be interpreted to be the probability
of simultaneously finding n points with positions X;,Xp,...,X,
in phase i.

For statistically homogeneous media, there is no preferred
origin, and hence the n-point correlation function depends on
their relative displacement vectors between the n points, i.e.

S (x1,%s,...,%,) =SV (x12,...,X1) )
where x;; = X; — X;, where we have chosen the origin be at pos-
ition x;. In such instances, the one-point correlation function
is a constant, namely, the phase volume fraction ¢, i.e.

¢ = (ZV (x)), (12)
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such that ¢ + ¢, =1, and two-point correlation function
depends on the relative displacement vector r = x; — X; and
hence ng) (X1,X2) = Szl) (r) [37, 63]. The autocovariance func-
tion x, (r) is defined as

W= (7040 T0x) =5 () -0, (3
where the fluctuating part of equation (9) is defined as
TV (x) =IO (x) - ¢, (14)

and thus is identical for each phase i = 1,2. At the extreme
limits of its argument, X, has the following asymptotic
behavior

Xv (I' = 0) = ¢1¢27

lim x, (l‘) =0, (15)

[r|—o00

the latter limit applying when the medium possesses no long-
range order. If the medium is statistically homogeneous and
isotropic, then the autocovariance function y, (r) depends only
on the magnitude of its argument r = |r|, and hence is a
radial function. In such instances, its slope at the origin is dir-
ectly related to the specific surface s (interface area per unit
volume); specifically, we have in any space dimension d, the
asymptotic form [63],

Xy () = ¢12 — B (d)s [r| + O (r[*) (16)
where
_ I'(d/2)
=@ w7

2.12. Spectral density.  The nonnegative spectral density
X, (Kk), which can be obtained from scattering experiments [91,
92], is the Fourier transform of x,(r), i.e.

% (K) = / X, (r)e ®Tdr >0,  forallk. (18)
]Rd

For isotropic media, the spectral density only depends on k =
|k| and, as a consequence of (16), its decay in the large-k limit
is controlled by the exact following power-law form [63]:

d
G~ 2D (19)
where
y(d) =27V ((d+ 1) /2) (20)

is a d-dimensional constant.

For the special case of packing of identical spheres of radius
a that comprises phase 2 with packing fraction ¢,, the spectral
density is simply related to the structure factor [63, 93]:

P20 (k;a) S(K). @21

Xy (k) =

where

1 2ra\’ 5

— <k> Juy2 (ka) , (22)
where v|(a) = 7%%a?/T(1+d/2) is the volume of a d-
dimensional sphere, and J,,(x) is the Bessel function of the
first kind of order v. Since &(k;a) is a positive, bounded well-
behaved function in the vicinity of the origin, it immediately
follows from expression (21) that if the underlying point pro-
cess is hyperuniform with a power-law structure factor S(k) ~
|k|* in the limit [k| — 0, then the spectral density x, (k) inher-
its the same power-law form [cf (4)] only through the structure
factor, not a(k;a) [62]. Moreover, it is clear that for stealthy
hyperuniform packings, relation (21) dictates that x,(k) is
zero for the same wavenumbers at which S(k) is zero (i.e.
equations (2) and (21) yield equation (6)), but the spectral
density also vanishes at the zeros of the function &(k; a), which
is determined by the zeros of J;/, (ka) [62].

2.2. Diffusion spreadability

Torquato demonstrated that the time-dependent diffusion
spreadability S(¢) in any d-dimensional Euclidean space R?
is exactly related to the microstructure via the autocovariance
function , (r) in direct space, or equivalently, via the spectral
density x, (k) in Fourier space [82]:

o
(27)! b

Here, ¢, is the volume fraction of phase 2, S(c0) = ¢y is
the infinite-time limit of S(7), and S(c0) — S(7) is called the
excess spreadability . This situation is a rare example of trans-
port in two-phase media that is exactly described by only the
first two correlation functions, namely, ¢; and two-point stat-
istics via either x, (r) or X, (k). The reader is referred to [82]
for a description of remarkable links between the spreadabil-
ity S(#), covering problem of discrete geometry, and nuclear
magnetic resonance (NMR) measurements.

For statistically homogeneous microstructures whose spec-
tral densities exhibit the following power-law form

S(00) =S(t) = /}R X (k)exp [—K*Dt] dk. (23)

Xy (K) ~ Blk| 24

in the limit |k| — 0, Torquato [82] showed that the long-time
excess spreadability for two-phase materials in R¢ is given by
the inverse power-law

C
(Dt/a2) @72
+o ((Dt/az)_(dJra)/z) (Dt/a* > 1),
(25)

S(o0) =S (1) =

7 Larger (smaller) spreadability S(¢) implies smaller (larger) excess spread-
abilty S(o0) — S(¥).
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Figure 4. ‘Phase diagram’ that schematically shows the spectrum of spreadability regimes in terms of the exponent « (taken from [82]).
As « increases from the extreme antihyperuniform limit of o — —d, the spreadability decay rate gets faster, i.e. the excess spreadability
follows the inverse power law 1/ fd+e) /2, except when av = +00, which corresponds to stealthy hyperuniform media with a decay rate that
is exponentially fast. Reprinted (figure) with permission from [82], Copyright (2021) by the American Physical Society.

(a)
)

(b) (c

Figure 5. Representative images of 3D two-phase media with ¢, = 0.20 possessing three different microstructural symmetries that are
considered in the present study. (a) Four models of layered media, consisting of infinite parallel slabs of phases 1 and 2 whose thicknesses
are derived from 1D models. From the leftmost to the rightmost, we present Debye random media (black), equilibrium hard rods in a matrix
(green), nonstealthy hyperuniform polydisperse sphere packing in a matrix (red), and stealthy hyperuniform sphere packing in a matrix
(blue), respectively. (b) Two models of transversely isotropic media with cylindrical symmetry obtained from 2D models: Debye media
(black) and stealthy hyperuniform sphere packings in a matrix (blue). (c) Two models of fully isotropic media: Debye media (black) and
stealthy hyperuniform sphere packings (blue). In each subfigure, the bright and dark colors represent phases 1 and 2, respectively.

where a is a characteristic heterogeneity length scale, o(x) is a microstructure-dependent coefficient; see figure 4. Thus,
signifies all terms of order less than x, and it is seen that the long-time asymptotic behavior of S(¢)
is determined by the exponent « and the space dimension

C=BI((d+a)/2) ¢/ |2¢7%?T (d/Z)} (26) d, i.e. at long times, S(f) approaches the value ¢, with a
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power-law decay 1 /t(‘“’“)/ 2, implying a faster decay as
increases for some dimension d. Thus, compared to a non-
hyperuniform medium with a power-law decay r~%/2, a hyper-
uniform medium with a decay rate 1/14*)/2 can be viewed
as having an effective dimension that is higher than the space
dimension, namely, d 4+ «. When « is bounded and posit-
ive, this result means that class I hyperuniform media has
the fastest decay, followed by class II and then class III,
which has the slowest decay among hyperuniform media. Of
course, antihyperuniform media with o« — —d has the slowest
decay among all translationally invariant media. In the stealthy
limit in which a = +00, the predicted infinitely-fast inverse-
power-law decay rate implies that the infinite-time asymp-
tote is approached exponentially fast. Indeed, for disordered
stealthy media defined by (6), it was shown [82] that long-time
behavior is exactly given by

exp (—K>Dr)

5(00) =S (1) ~ =

(Dt/a*> >1). (27)

3. Model microstructures

In what follows, we describe nonhyperuniform and
hyperuniform models of 3D two-phase media with certain
microstructural symmetries for which we investigate the afore-
mentioned optical and transport properties. Specifically, we
describe 3D model microstructures of layered, transversely
isotropic media, and fully isotropic media, , including a
description of their spectral densities, which are used to com-
pute their effective dynamic dielectric constants and spread-
abilities. Representative images of the models are shown in
figure 5. In figure 5(a), we depict representative images of
the four models of layered media: Debye random media,
equilibrium hard rods in a matrix, nonstealthy hyperuniform
polydisperse sphere packing in a matrix, and stealthy hyper-
uniform sphere packing in a matrix. For transversely isotropic
and fully isotropic media, we depict representative images
of the two models for each symmetry: Debye media and
stealthy hyperuniform packings in a matrix; see figures 5(b)
and (c). Among four models, three, except for Debye random
media, are derived from packings of nonoverlapping particles
such that the particles of dielectric constant e, are distrib-
uted throughout a matrix of dielectric constant €, and thus
¢, indicates the packing fraction. We take ¢, = 0.2 for all
models considered here. In what follows, we describe all of
the models.

3.1 Models

3.1.1. Debye random media.  Debye et al [92] hypothesized
that the following autocovariance function characterizes iso-
tropic random media in which the phases form domains of
‘random shape and size’:

Xy (I") :QSIQSZeXp(*r/a)) (28)
where a is a characteristic length scale. This functional form
for , (r) was later shown to be realizable by two-phase media

across space dimensions [94-96] and was dubbed Debye
random media [63, 94]. The Taylor expansion of (28) about
r =0 and comparison to (16) reveals that the specific surface
s of a Debye random medium in any space dimension is given
by

_ o1 92

) (29)

N

The spectral density of Debye random media in any space
dimension is given by [95]
Prpacaa’

[1 + (ka)z} e

where ¢y = 2% @D/2T((d+1)/2). The representative
images of this model shown in figure 5 are obtained using
the construction techniques of [96].

Xy (k) = (30)

3.1.2. Equilibrium hard rods in a matrix. = We also examine
equilibrium (Gibbs) ensembles of identical hard spheres of
radius a with packing fraction ¢, [97] in a matrix. In particu-
lar, we consider such disordered packings along the stable dis-
ordered fluid branch in the phase diagram [63]. All such states
are nonhyperuniform. In the case of 1D equilibrium hard rods
in a matrix, pair statistics are known exactly [98]. In particu-
lar, using the exact solution of the direct correlation function
[98, 99] and the Ornstein—Zernike integral equation, one can
obtain the exact structure factor S(k). This solution for S(k),
together with equation (21), yields the corresponding spectral
density x, (k) [63, 82]:

Xy (k)
_ 2sin (ka)?
= [T]
" {1 _ 2¢n {¢2[cos (2ak) — 1] + 2aksin (2ak) (¢ — 1)}
(1—¢2)* (2ak)

—1

(3D

The representative image of this model in figure 5(a) is gen-
erated via the Monte Carlo method [63]. Henceforth, we call
this model equilibrium (Equil.) media.

3.1.3. Nonstealthy hyperuniform polydisperse sphere pack-
ings in a matrix. ~ Nonstealthy hyperuniform (NSHU) pack-
ings of spheres with a polydispersity in size in a matrix can
be constructed from nonhyperuniform progenitor point pat-
terns via a tessellation-based procedure [100]. Specifically, we
begin with the Voronoi tessellation [63] of the progenitor point
patterns, which are the centers of 1D equilibrium media (see
section 3.1.2) with packing fraction 0.20 in this work. We then
move the particle center in a Voronoi cell to its centroid and
rescale the particle such that the packing fraction inside this
cell is identical to a prescribed value ¢, < 1. The same pro-
cess is repeated over all cells. The final packing fraction is
0 = Z;VZI vi(a;) /Vz = pvi(a), where p is the number dens-
ity of particle centers and a represents the mean sphere radius.
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Figure 6. Log-log plots of dimensionless radial spectral densities X, (k) s¢ as functions of dimensionless wavenumber k/s for all two-phase
media considered here with three structural symmetries, each with ¢, = 0.20: (a) layered, (b) transversely isotropic, and (c) fully isotropic

media. Representative images of each model are shown in figure 5.

In the thermodynamic limit, the spectral densities of the result-
ing particulate composites, which are NSHU media, exhibit a
power-law scaling ¥, (k) ~ |k|* for small wavenumbers [100],
which are of class I.

3.1.4. Stealthy hyperuniform sphere packings in a matrix.

Stealthy hyperuniform (SHU) two-phase media have
X,(k)=0 for the finite range O<|k|<K, -called
the exclusion-region radius. Specifically, we consider
d-dimensional SHU sphere packings in a matrix of pack-
ing fraction ¢, that can be numerically generated in the
following two-step procedure. First, we generate point con-
figurations consisting of N particles in a fundamental cell
$ under periodic boundary conditions via the collective-
coordinate optimization technique [6, 7], which finds numeric-
ally the ground-state configurations of the following potential
energy;

() = % S w00 S0 + S ulry)

k i<j

where V5 is the volume of §, v(k) = ©(K — |k|), ©(x) (equal
to 1 for x > 0 and zero otherwise) is the Heaviside step func-
tion, soft-core repulsion u(r) = (1 —r/c)?©(c — r) [8]. The
consequent ground-state configurations, if they exist, are still
stealthy and hyperuniform, and their nearest-neighbor dis-
tances are larger than the length scale ¢. Finally, to create
packings in a matrix, we follow [65] by circumscribing the
points by identical spheres of radius a < o /2 under the con-
straint that they cannot overlap. Importantly, one cannot obtain
disordered SHU packings in a matrix with ¢, > 0.2 for d =
1,2 without the soft-core repulsion u(r) at low x values [7].

For such SHU media, the degree of stealthiness x is meas-
ured by the ratio of the number of the wave vectors within
the exclusion-region radius in the Fourier space to the total
degrees of freedom [6, 7],1i.e. x = K/(27 p) in one dimension,
and x = K?/(167 p) in two dimensions. These SHU media are
highly degenerate and disordered if x < 1/3 in one dimen-
sion or y < 1/2 in two and three dimensions [7]. In the present
work, we consider the cases of x = 0.3 in the first three space
dimensions.

3.2. Spectral densities

Estimation of the attenuation and spreadability behaviors
reported in section 6 require the computation of the spec-
tral density for the models. Figure 6 shows the dimensionless
radial spectral density ¥, (k)s? for all models considered here
with three microstructural symmetries, each with ¢, = 0.20.
For all nonhyperuniform media (Debye for d =1,2,3 and
equilibrium for d = 1), x, (k) is evaluated by using the analytic
expressions given in equations (30) and (31). For all hyper-
uniform media (NSHU for d =1 and SHU ford = 1,2, 3), we
obtain y, (k) from numerically generated configurations.

Across all length scales, the spectral densities for all four
models of layered media are considerably different from
one another; see figure 6(a). In the long-wavelength regime
(k/s < 1), the SHU medium suppresses volume-fraction fluc-
tuations [i.e. X, (k) = 0] to a greater degree than the NSHU
medium over a wider range of wavelengths. By contrast,
Debye media depart the most from hyperuniformity. In the
small-wavelength regime (k/s > 10), x, (k) of SHU and equi-
librium media commonly show sharp oscillations because
these two media consist of particles of identical size. By con-
trast, for the same wavelength regime, Debye and NSHU
media do not exhibit any oscillations because they consist
of phase domains with a broad range of sizes. For the other
two symmetries (d = 2,3), the behaviors of X, (k) are qualit-
atively similar to those observed in layered media, as seen in
figures 6(b) and (c).

4. Strong-contrast formulas for the effective
dynamic dielectric constant

In what follows, we present the key formulas for the effective
dynamic dielectric constant tensor of layered and transversely
isotropic media, which were extracted from the general strong-
contrast expansion in [43, 44, 83]. We present relevant for-
mulas at the three-point level to prove that SHU layered and
transversely isotropic media are perfectly transparent within
finite wavenumber intervals through the third-order terms in
section 5. At the two-point level, these formulas involve ¥, (k),
which are applied in section 6 to estimate the effective atten-
uation behaviors of the various models due to their simplicity
and great accuracy. We also employ the corresponding formula
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for 3D isotropic media at the two-point level, which was pre-
viously derived in reference [43], and apply it in the present
work. The reader is referred to appendix A for the problem
setup and assumptions from which the formulas below are
obtained.

4.1. Multiple-scattering approximations for layered media

We consider our multiple-scattering approximations for the
effective dynamic dielectric constant tensor &, (k;) of layered
media (figure 5(a)) when waves are normally incident, i.e.
k| = k1Z, where Z is a unit vector along the z-direction,
which is the symmetry axis of the layered media. (The
reader is referred to supplement! of [83] for the formulas of
obliquely incident waves.) Thus, these formulas depend on the
wavenumber k. Due to the symmetries of layered media, one
can decompose €, (k; ) into two orthogonal components £ (k; )
and €%(k;) for the transverse and longitudinal polarizations,
respectively, as follows: e, (k;) = e (ki) (I — 2z) + €5 (k) ZZ.

Here, we focus on the formulas for e (k). (The reader is
referred to appendix A.1 for the formula for the longitudinal
polarization.) We first present the formula at the three-point
level, which is used to prove that SHU layered media are per-
fectly transparent at the three-point level; see section 5. The
scaled strong-contrast approximation for £ (k;) at the three-
point level is given as

) (ki)

¢1262/5152(1|D>
1 (D)\? 41
) As (ki (20) = (2285 ) A (ks ()
(32)

1+

=€ s

(1D)

¢ — (52521

where k. = ki+\/(¢) /e1, B,E;D) =1-—¢,/¢, is the 1D counter-
part of the dielectric polarizability, and the second- and third-
order terms are defined, respectively, as

1. :1 ﬁ /oo XV(Q)
Ay (kje) = 5 { —PV. | dg . (2k)2
ik
+ 5 %O +>zv(2k)]}, (33)
1R\ 1
Ar(ke)= — [ — / dg —————
3 (kse) S (2775) . q1 (k+q1)2*k2
X/ d%mAgp)(%,%), (34
e ) —

where p.v. stands for the Cauchy principal value, and
Agz)(ql,qg) is the Fourier transform of Af)(zn,zm)z

ng) (221)S£2) (232) — 2 ng) (221,232 + Zzl)-

Note that £ (k;) given in (32) is complex-valued, imply-
ing that the media can be lossy due to forward scatter-
ing and backscattering from fluctuations in the local dielec-
tric constant. The static limit of equation (32) is the arith-
metic mean of the local dielectric constants, i.e. £1(0)
(€) = ¢1€1 + ¢ae2, Which is exact for any 1D microstructure
[63].

In the long-wavelength regime (k;/s < 1), assuming a
power-law scaling of x, (k) for small k as specified by
equation (24), the imaginary part of equation (32) has the fol-
lowing asymptotic behaviors:

Im [e- (k1)] ~ (€2 — 1) Im [A3 (ks; (€))]
{kl, a =0 (typical nonhyperuniform)

kl 14+«
It is seen that hyperuniform media attenuate less than
nonhyperuniform ones in the long-wavelength regime.
Furthermore, hyperuniform systems can exhibit a wide range
of behaviors by tuning the exponent «. The attenuation beha-
vior of the SHU medium is elaborated in section 5.

, >0 (hyperuniform).
(35)

4.2. Multiple-scattering approximations for transversely
isotropic media

We obtain our multiple-scattering approximations for the
effective dynamic dielectric constant tensor €,(k;) of trans-
versely isotropic media (see figure 5(b)) for the situation in
which waves are normally incident to the symmetry axis of
the media, i.e. k; = k;y, where y is a unit vector along the y-
direction. (The reader is referred to supplement1 of [83] for the
formulas obliquely incident waves.) These formulas depend
on the wavenumber k; in the reference phase ¢ (= 1). Due
to the symmetries of the problems, one can decompose €, (k)
into two orthogonal components e/ (k; ) and €1 (k; ) for trans-
verse magnetic (TM) and TE polarizations ®, respectively, as
follows: €,(k;) = ™ (ky)zz + €IE (ky ) (I — 2z).

In this paper, we also consider ¢/ (k). (Formulas for TE
polarization are given in appendix A.2.) We begin by present-
ing the three-point formula, which is used to prove that SHU
transversely isotropic media are also perfectly transparent at
the three-point level; see section 5. The scaled strong-contrast

approximation for eI™ (k) at the three-point level is given as

8 The electric field for TM (TE) polarization is parallel (normal) to the
symmetry axis.
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™
e (kl) =1+

(2522 [(62 +e1) SD)}

€1

where ﬁlgéD)E(sp—eq)/(sp+5q) is the 2D counterpart
of the dielectric polarizability, and k™ =k;+\/(c) /e
is wavenumber in the optimal reference phase for TM
polarization. The second- and third-order coefficients are

defined as
L[k 2 o 2g9X,(q)
AT () = = 7/ d ../d—v
2 f{ﬂ 0 ¢[pv o ‘= (2kcose)’
+ im X, (2kcos (b)] } : (37)
mrg. oy —L[_K }2
A3 (kvg)f ¢2 |:€(27T)2

A(2)
A ,

x/dql/dqz -  (4,4) ) )

R? 2 [|q1+ky\ *kz} [\Q2+k3| *kz}

(3%

where Agz) (q;,q9,) is the Fourier transform of

A§2) (X21,X31) = ng) (le)Séz) (X32) — @p ng) (X21,X32 + X21).
The static limit of equation (36) is the arithmetic mean of the
local dielectric constant:

eM(0) = (e) =191 +e20n. (39)

In the long-wavelength regime (k;/s < 1), assuming a
power-law scaling of ¥, (k) for small k as specified by
equation (24), the imaginary part of equation (36) has the fol-
lowing asymptotic behaviors:

Im [eeTM(kl )} ~ (g7 — 51)21m [AZTM (kI <5>)]

62— APV, () | (e2+21)

(36)

<2D>r’
21

2] =AM, (2)) [(e2+21)

|

which are identical to those for TE polarization [43]. Thus,
in the long-wavelength regime, hyperuniform media attenuate
less than nonhyperuniform ones and can exhibit a wide range
of behaviors by tuning the exponent «. The attenuation beha-
vior of the SHU medium is elaborated in section 5.

2
kl )
k]ZJrOz

« = 0 (typical nonhyperuniform)

)

,a > 0 (hyperuniform)
(40)

5. Perfect transparency intervals of stealthy
hyperuniform media

We have previously shown that second-order strong-contrast
formulas for SHU two-phase composites, i.e. those in which
the spectral density obeys the condition (6), predict perfect

transparency or, equivalently, a zero imaginary part of the
effective dielectric constant, in a finite range of wavenum-

bers that is determined by the exclusion-region radius K. This
was done specifically for TM [83] and TE [43] polarization
in transversely isotropic media and transverse polarization in
fully isotropic media [43] and layered media [44]. Across
space dimensions, the predictions of such perfect transparency
intervals have a similar form °:

K

2\/8*/817

where the dielectric constant of the optimal reference phase ¢,
is given as

0<k <Kr= (41)

(), Transverse polarization in layered media, (42)
e, TM polarization in transversely isotropic media , (43)
=T 81(325)), TE polarization in transversely isotropic media, (44)
51(93(?), Transverse polarization in fully isotropic media, (45)

9 For layered media, the perfect transparency interval (41) at the two-point
level was derived from the condition that the second-order formula (32) has
Im[A3" (ks; (€))] = 0. The corresponding intervals for TM and TE polariza-
tions in transversely isotropic media were derived by finding the intervals in
which AT (KIM; () (equation (36)) and AZE (kiE; a,(jGD)) (equation (A.3))

have zero imaginary parts, respectively.

[
and EI(;IGD) is the Bruggeman approximation [63, 101] of

the effective static dielectric constant of d-dimensional two-
phase composites '°. Within the finite perfect transparency

10 For a contrast ratio € /€1 < 4, the Bruggeman formulas are very close to
the Maxwell-Garnett formulas employed in [43]. The former offers a slightly
better renormalization, since it uses the fact that the mean of the depolarization
tensors is exactly zero; see [83].
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Figure 7. Prediction (41) of the dimensionless sizes Kr/K of the perfect transparency intervals for stealthy hyperuniform media in the four
cases: transverse polarization in layered media, TM and TE polarizations in transversely isotropic media, and transverse polarization in fully
isotropic media. (a) The sizes as functions of the contrast ratios £, /e with the volume fraction ¢, = 0.20 of the higher dielectric constant.
Here, 6 denotes an infinitesimally small positive number. (b) The sizes as functions of ¢, with €2 /&1 = 4.0.

interval (41), the rapid convergence of strong-contrast expan-
sions and high predictive power of their second-order trunca-
tions, as validated in [43, 44, 83], imply that third- and higher-
order contributions to the imaginary part Im[e, (k)] are negli-
gibly small for relatively large contrast ratios (e2/¢1 < 10).

In the present work, we now also prove that the inter-
val (41) for layered media and transversely isotropic media
(with TM polarization) applies not only at the two-point but
the three-point level as well. We begin by proving that the per-
fect transparency interval specified by equation (41) in con-
junction with equation (42) for layered media is exact through
the third-order terms. Accounting for the perfect transparency
at the two-point level, from the third-order formula (32), we
obtain Im[e} (k)] o (e2 — &) Im[A5 (ks (€))] for 0 <k, <
K /2. Thus, it is sufficient to show that

Im [A5 (k,(e))] =0, fork. <K/2. (46)

The reader is referred to appendix B.1 for a detailed proof of
equation (46).

We now show that the perfect transparency interval for
TM polarization in transversely isotropic media is specified
by equation (41) together with equation (43) through the
third-order terms. Due to the perfect transparency at the
two-point level, the third-order formula of equation (36)
yields Im[e™ (k)] o (2 — 1) Im[AT™ (KIM; (€))] for 0 <
kIM < K/2. Therefore, it is sufficient to show that

Im [ATY (KM (e))] =0, for kM < K/2. (47)

The detailed proof of (47) is presented in appendix B.2.
The fact that the above results show perfect transparency
through third-order terms in the strong-contrast expansion

implies that the localization length for such stealthy hyper-
uniform media should be very large compared to any prac-
tically large sample size, and thus, there can be no Anderson
localization within the predicted perfect transparency intervals
in stealthy hyperuniform layered and transversely isotropic
media in practice, as noted in [83]. This prediction for layered
media is especially remarkable because the traditional under-
standing is that localization must occur for any type of disorder
in 1D systems [86-89, 102].

It is noteworthy that the dimensionless size of the per-
fect transparency interval, Kr/K, defined by equation (41),
tends to decrease as the wave propagation is disturbed fur-
ther for the four cases considered in equations (42)—(45); see
figure 7. Specifically, figure 7(a) shows that the dimension-
less interval size Kr/K decreases with the contrast ratio €, /1,
since a higher contrast ratio strengthens scattering. Similarly,
in figure 7(b), we see that K7/K decreases with the volume
fraction ¢, at a fixed contrast ratio £, /&1 = 4, since the fre-
quency of scattering events is proportional to ¢,. Figure 7 also
reveals the relative ranking of the four cases for K7 /K: Kr/K is
the lowest for TM polarization in transversely isotropic media
(and layered media), followed by fully isotropic ones, and is
the highest for TE polarization in transversely isotropic media.
This ranking is again due to the strength of reflectance (i.e.
scattering) on an interface between two dielectric materials.
Specifically, the Fresnel equations [103] dictate that among
s/p-polarized lights, in which the electric field is normal/paral-
lel to the incident plane, the s-polarized one is always reflected
more than the p-polarized one. Thus, for transversely isotropic
media, the dimensionless size of K7 for TM is lower than TE
because the TM/TE wave is always s/p-polarized. For layered
media, the ratio K7/K is identical to Ky/K for the TM polar-
ization because the transverse waves are always s-polarized.
Similarly, the dimensionless interval size Kr/K for isotropic
media is in between those for TE and TM polarizations, since
the reflected waves in a 3D isotropic media have both s and
p polarizations due to interfaces that are isotropically oriented
with respect to the incident radiation.
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Figure 8. Predictions of the scaled strong-contrast approximation
(equation (32)) of the imaginary part of the effective dynamic
dielectric constant Im[e;- (k;)] as a function of the dimensionless
incident wavenumber k; /s for disordered layered media with

¢ =0.20 and &, /e; = 4.0, where s is the specific surface. We
consider the four models: Debye, Equil., NSHU, and SHU media.
The plot is shown on a log-log scale.

6. Results for attenuation and spreadability
characteristics and their correlations

6.1. Attenuation characteristics

Here, we compare the extraordinary effective attenuation char-
acteristics of SHU media to those of their nonstealthy counter-
parts. For this purpose, we compute the imaginary part of the
effective dielectric constant Im[e, (k;)] (which is related to the
imaginary part of the effective wavenumber k, = ki +/e./€1),
as predicted from the scaled second-order strong-contrast
approximations. We begin by showing in figure 8, the
imaginary part Im[e} (k;)] for the four models of layered
media (d = 1) (see section 3) with ¢, = 0.20 and &, /| = 4.0.
As noted in the previous section, the stealthy hyperuniform
medium exhibits perfect transparency (i.e. Im[e} (k;)] = 0)
in the finite interval specified by equation (41), whereas
the three nonstealthy media, whether hyperuniform or not,
always exhibit nonzero attenuation with power-law scalings
lie. Im[e) (k)] ~k'T®] for small wavenumbers (k;/s <
0.3). Furthermore, for k;/s < 0.3, the relative ranking of
their degree of attenuation is identical to their correspond-
ing rankings of the large-scale volume-fraction fluctuations,
which are proportional to the scattering intensity [i.e. X, (k)
for small k], because the attenuation comes solely from scatter-
ing due to dielectric inhomogeneity (not absorption). Thus, the
Debye medium exhibits the strongest attenuation, followed by
the equilibrium and then the NSHU media, down to the SHU
one, in which the attenuation is zero.

For transversely isotropic and fully 3D isotropic media,
we study the imaginary parts of the effective dielectric con-
stant for two of the aforementioned models that exhibit the

greatest and least attenuation, namely, Debye and SHU media
(see section 3), respectively, with ¢, = 0.20 and &,/¢; = 4.
We do not report corresponding results for the equilibrium
and the NSHN media for d =2 and d = 3, since qualitatively
they are similar to the layered media models. The predictions
shown in figure 9(a) are obtained from the second-order for-
mula of equation (36) for TM polarization in transversely iso-
tropic media (d = 2), whereas those in figure 9(b) are obtained
from the scaled approximation derived in [43]; see equation
(73) for d =3 therein. For these two symmetries, the perfect
transparency interval (41) of the SHU medium is singularly
different from the nonhyperuniform Debye medium with a
substantial degree of attenuation, i.e. with a power-law scal-
ing Im[e, (k;) ~ k] for small wavenumbers (k; /s < 0.3). As
for layered-media cases for k;/s < 0.3, the relative ranking
of the attenuation behaviors of these two models is consistent
with the corresponding rankings of their large-scale volume-
fraction fluctuations.

6.2. Spreadability characteristics

We begin by considering the four models of layered media
(d=1) with ¢, =0.2 to demonstrate the extraordinary
property of diffusion spreadability for the SHU medium; see
figure 10. At the intermediate times (0.01 < Dts® < 1), we find
that the excess spreadability for the Debye medium shows the
slowest decay, followed by the equilibrium one, and those
for two hyperuniform media commonly shows the fastest
decay, as predicted in [82]. Consistent with previous theoret-
ical results [82], we also find that the excess spreadability for
nonhyperuniform Debye medium has the slowest long-time
decay to its infinite-time behavior among the four models, fol-
lowed by the equilibrium media with the same decay rate, i.e.
1/¢'/2. The NSHU medium has the second fastest decay rate
(1/£°/%). Of course, the SHU medium is distinguished among
all of the nonstealthy models, since its excess spreadability
decays exponentially fast, as predicted by the asymptotic for-
mula (27). More specifically, referring to the asymptotic for-
mula (25), the two nonhyperuniform layered media exhibit a
common power-law decay with a coefficient C, specified by
equation (26). Table 1 summarizes the values of the coeffi-
cients B, defined in equation (24), and C for all models of
layered media considered here, along with their values of the
exponent . We take SHU medium to be one with o = +o0,
roughly speaking, because its decay rate of S() is faster than
any inverse power law. The long-time decay rate of the excess
spreadability S(co) — S(¢) is faster for media with smaller
large-scale volume-fraction fluctuations (i.e. small values of
X, (k) for small k around the origin) [104], i.e. it takes less
time to reach the state of uniform concentration of the solute
in the infinite-time limit in media when such fluctuations are
smaller; see figure 3.

For both transversely isotropic (d =2) and fully isotropic
(d=3) media, we study the two models with ¢, =0.20
whose S(o0) — S(#) at long times decay slowest and fastest,
i.e. Debye media and SHU ones, respectively; see figure 11.
Even at the intermediate times, S(c0) — S(¢) for SHU media
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Figure 9. Predictions of the scaled strong-contrast approximation of the imaginary part of the effective dynamic dielectric constant as a
function of the dimensionless incident wavenumber k; /s for disordered two-phase media in three dimensions with ¢, = 0.20 and

€2/e1 = 4.0 with two distinct symmetries: (a) TM polarization in transversely isotropic media (d =2) and (b) transverse polarization in
fully isotropic media (d = 3), where s is the specific surface. For each symmetry, we consider Debye and SHU media. The plots shown in (a)
are obtained from equation (36), whereas the plots shown in (b) are obtained from the scaled approximation for d = 3 in [43]. Both plots are

shown on log-log scales.
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Figure 10. Comparison of the excess spreadabilities for disordered
layered media (d = 1) with ¢» = 0.20 as functions of the
dimensionless time Dtsz, where s is the specific surface. We
consider four models: Debye, Equil., NSHU, and SHU media. The
long-time behaviors of S(co) — S(¢) for each of these models is
indicated.

decays much faster than those for the Debye ones. While the
long-time S(o00) — S(7) for Debye media decays like 1/14/2,
as predicted by equation (25), those for the SHU media decay
exponentially fast, as predicted by equation (27). The corres-
ponding coefficients B and C are also listed in table 1. For the
same reasons given for layered media, the relative rankings of
these two models for the asymptotic decay rate of the long-
time behavior of S(c0) — S(#) is also identical to that of their
large-scale volume-fraction fluctuations [104].

Table 1. Values of the coefficients B and C for all models
considered here in three distinct structural symmetries with

¢2 = 0.20. We consider four models for layered media: Debye,
Equil., NSHU, and SHU media. For the other two symmetries, we
focus on Debye and SHU media. Here, the exponent o and B are
specified by equation (24) in units of the specific surface s, and C is
specified by equation (26). For SHU, we denote av = 400 because
its spectral density is smaller than any power-law scaling.

Symmetry Model B C
Debye (@« =0) 1.01 x 107! 1.44 x 107!
: _ -2 -2
Layered (d= 1) Equil. (@=0) 5.12 x 10_2 7.22 x 10_2
NSHU (a=4) 5.13 x 107 4.37 x 10
SHU (a = 4+00) 0.0 0.0
Transversely Debye (a=0) 4.94 x 107! 2.01 x 107!
Isotropic (d =2) SHU (a = 4o0) 0.0 0.0
. . Debye(a=0) 250 2.86 x 107!
Fully Isotropic (d =3) SHU (o = +00) 0.0 00

6.3. Cross-property relations

We now show that the attenuation behaviors of electro-
magnetic waves for sufficiently small wavenumbers and the
long-time decaying behaviors of the excess spreadabilities
are positively correlated with one another, i.e. we demon-
strate that there are cross-property relations between them.
We begin by considering our four models of layered media
(i.e. d=1): Debye, equilibrium, NSHU, and SHU media.
Figure 12 depicts the values of the imaginary part of the
effective dielectric constant Im[e.(k;)] at a dimensionless
wavenumber k; /s = 0.1 and the excess spreadability S(oco) —
S(t) at alarge dimensionless time Dts? = 20. This plot clearly
demonstrates that as the degree of attenuation increases from
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Figure 11. Comparison of the excess spreadabilities as functions of the dimensionless time Dzs> for (a) disordered transversely isotropic
media (d =2) and (b) disordered fully isotropic media (d = 3) with ¢» = 0.20, where s is the specific surface. We consider two models for

each symmetry: Debye and SHU media. The long-time behavior of S(co

) — S() for each of these models is indicated.
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Figure 12. Cross-property relation between the imaginary part of the effective dielectric constant Im[e,] at a small dimensionless
wavenumber ki /s = 0.1 within the transparency interval and the excess spreadability S(co) — S(r) at a large dimensionless time Dzs* = 20
for the four models of layered media with ¢, = 0.20. We consider Debye, Equil., NSHU, and SHU media. The data point for the SHU
medium is shown in the gray shaded region, since it has a zero imaginary part, which cannot be shown in the log scale. The Debye medium
has the largest attenuation and spreadability, while the SHU has zero attenuation and the fastest (exponentially fast) spreadability decay rate.

zero attenuation and the associated smallest long-time excess
spreadability (fastest decay) for the SHU media, long-time
excess spreadability increases (slower decay rate) until the
largest attenuation and long-time excess spreadability (smal-
lest decay rate) is achieved for the Debye media. We see that
the NSHU medium has a substantially smaller attenuation
and excess spreadability than that of the equilibrium media.
Table 2 lists the values of the imaginary part of the effect-
ive dielectric constant Im|[e, (k)] at a dimensionless wavenum-
ber k; /s = 0.1 and the excess spreadability S(co) —S(r) at a
large dimensionless time Dts*> = 20 corresponding to the plot-
ted values in figure 12. While our choices for the values of the
small dimensionless wavenumber k; /s and the dimensionless
time Dts? are arbitrary, the relative rankings of the models are
independent of the specific valuesif k; /s < 0.3 and 10 < Dts?.

Table 2 lists corresponding values the imaginary part of
the effective dielectric constant Im[e, (k;)] at a dimensionless
wavenumber & /s = 0.1 and the excess spreadability S(oo) —
S(1) for Debye and SHU media in both the transversely iso-
tropic (d =2) and fully isotropic case (d =3). The analog-
ous positive correlations between the attenuation behaviors
and the long-time spreadability behaviors seen in for d =1
are observed in these instances, even if we do not report
corresponding results of the equilibrium and NSHN media
for d=2 and d=3, since qualitatively, they are similar
to the layered media models. Specifically, the SHU media
achieve both zero attenuation (i.e. perfect transparency) and
the smallest long-time excess spreadability (i.e. exponen-
tial decay), while Debye media exhibit the strongest atten-
vation and largest long-time excess spreadability among
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Table 2. Values of the imaginary part of the effective dielectric constant Im[e,.] at a small dimensionless wavenumber &, /s = 0.1 within the
transparency interval and the excess spreadability S(co) — S(f) at a large dimensionless time Drs* = 20 for all models considered here for
three distinct structural symmetries with ¢, = 0.20. For layered media (d = 1), we consider Debye, Equil., NSHU, and SHU media. For
other symmetries, we consider Debye and SHU media. While we arbitrarily choose the values for k; /s and Dis?, the relative rankings for
the models are independent of the specific values if k1 /s < 0.3 and Dis?® > 10.

Symmetry Model Im[e, (k1)) S(c0) —S(r)

Debye  3.60 x 1072 322 x 1072

; 2 -2

Layered (d = 1) Equil. 1.81 x 1075 1.61 x 1075
NSHU 233 x 10 1.41 x 10

SHU 0.0 1.97 x 107"

— Debye 577 x 1077 987 x 107°

Transversely Isotropic (d =2) SHU 0.0 774 % 10-2

o Debye  1.58 x 107 3.05 x 107°

Fully Isotropic (d = 3) SHU 0.0 275 % 102

all four models. Furthermore, for a d-dimensional NSHU
model, the power-law scaling of its small-wavenumber atten-
uation behavior (i.e. ITmle, (k)] ~ k9T, as predicted by
equations (35) and (40)) determines that of its long-time
excess spreadability (i.e. S(c0) —S(t) ~ (Dts?)~(@H+)/2 ag
predicted by equation (25)), where the exponent « is specified
by equation (24).

7. Discussion

In this paper, we have further elucidated the extraordin-
ary optical and transport properties of 3D disordered SHU
media with three distinct microstructural symmetries: layered,
transversely isotropic, and fully isotropic cases. We had pre-
viously shown that the accurate truncations of the strong-
contrast expansions of the effective dynamic dielectric con-
stant &,(k;)[43] predicted the perfect transparency inter-
val defined by equation (41) for SHU layered [44], trans-
versely isotropic [43, 83] and fully isotropic media [43]. In
appendix B, we provided detailed proofs that the same perfect
transparency interval exactly applies through the third-order
truncations for such layered media and transversely isotropic
in the case of TM polarization. Given the rapid convergence
of the strong contrast expansion, the previously demonstrated
accuracy of the second-order approximations [43, 44, 83]
leads to the conclusion that there can be no Anderson localiza-
tion within the predicted perfect transparency interval in such
SHU media in practice because the localization length (asso-
ciated with only possibly negligibly small higher-order contri-
butions) should be very large compared to any practically large
sample size, as noted in [83]. This prediction for layered media
is especially remarkable because the traditional understanding
is that localization must occur for any type of disorder in 1D
media.

Additionally, we further revealed the singular physical
properties of 3D SHU two-phase media with three dis-
tinct symmetries (layered, transversely isotropic media, and
fully isotropic media) by comparing and contrasting them to

those of other model nonstealthy microstructures. Specifically,
we studied their attenuation characteristics, as measured by
the imaginary part of €.(k;,w), and transport properties, as
measured by the time-dependent diffusion spreadability S(7).
Among the possible hyperuniform states of composite media,
the SHU ones stand out as having singular physical proper-
ties, such as exponentially fast decay of excess spreadabil-
ity and finite perfect transparency intervals for all symmet-
ries. We demonstrated that there are cross-property relations
between the attenuation and spreadability behaviors by quan-
tifying how the imaginary parts of the effective dielectric con-
stant and the excess spreadability at long times are posit-
ively correlated as the structures span from nonhyperuniform,
NSHU, and SHU media. Such cross-property relations are use-
ful because they enable one to estimate one of the properties,
given a measurement of the other [63].

There are a variety of outstanding open problems for future
research. For example, while our results imply that there can
be no Anderson localization for 1D disordered SHU medium
in practice, its rigorous and direct proof in the thermody-
namic limit remains an open problem. To resolve this prob-
lem, we will systematically study the localization length of
1D SHU media as a function of system size [105]. Another
interesting direction is to extend the cross-property relations
between diffusion spreadability and attenuation behaviors for
general cases, such as arbitrary incidence direction or two-
phase media with absorbing phases. It will also be useful to
establish cross-property relations for SHU media for other
wave phenomena, such as elastodynamics characteristics [42],
as well as other transport properties. Concerning the latter pos-
sibility, it has recently been shown that the fluid permeabil-
ity associated with fluid transport in porous media is bounded
from above in terms of a functional involving the spectral dens-
ity x, (k) [95]. Since the second-formulas for €,.(k;) and the
formulas for the spreadability S(r) also depend on the spec-
tral density, it would be relatively straightforward to determ-
ine whether useful cross-property relations exist between these
three different physical properties for nonhyperuniform and
hyperuniform media.
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Appendix A. Scaled strong-contrast formulas at
three-point levels

Here, we provide detailed descriptions, including the problem
setup and assumptions, of the strong-contrast formulas for the
effective dynamic dielectric constant, omitted in section 4. We
consider a plane electric wave of an angular frequency w and
a wavevector Kk, in the reference phase g, which is taken as
the matrix phase (i.e. ¢g=1) of the composite unless other-
wise stated. We make three assumptions about both phases:
(a) they have constant real-valued dielectric constants, (b)
they are dielectrically isotropic, and (c) they are nonmagnetic.
Thus, such a dielectric composite cannot absorb waves but
attenuate them solely due to multiple scattering from fluc-
tuations in the local dielectric constant. Since these assump-
tions give a simple relation between the wavenumber k; in the
reference phase ¢ =1 and angular frequency w [i.e. k; (w) =
ki (w)| = y/E1w/c], where c is the speed of light in vacuum,
we henceforth do not explicitly indicate the w dependence, i.e.
ee(kl,w) = Ee(kl).

Under these three assumptions, we derived the follow-
ing general strong-contrast expansion for the linear fractional
form of e,.(k;) in [43]:

oLy ({I+D(1) “[ee(ky) *61[}} “[ee(ky) *511}71) AL

=L — AP (k) - AP (k) — ..., (A.)
where p (=2) indicates the polarized phase, A% (k) is a
wavevector-dependent second-rank tensor that is a functional
involving the set of correlation functions ng),ng),..., ,(,2),
defined in section 2.1.1, and products of the principal part
of the dyadic Green’s function, and the two constant second-
rank tensors Lgl) and D) are associated with an infinites-
imal region around the singularity in the Green’s function [43,
106]. The linear fractional form of the strong-contrast expan-
sion (A.1) results in a rapidly converging series whose lower-
order truncations lead to accurate approximation formulas for
e.(ky), even for large contrast ratios. This is to be contras-
ted with standard weak-contrast expansions that do not con-
verge rapidly for large contrast ratios; see references [43, 8§3]
for such a quantitative explanation. Indeed, its truncation at the
two-point level yields a highly accurate estimation of €, (k)

due to the fact that higher-order contributions are negligibly
small, implying that this resulting formula very accurately
approximates multiple scattering through all orders [43, 44].
Furthermore, this series takes into account the singularity of
the dyadic Green’s function and thus is valid even for large
values of phase contrast ratio €, /¢; and various microstruc-
tural symmetries. In what follows, we briefly outline the deriv-
ations of the key formulas for the effective dynamic dielectric
constant tensor of layered and transversely isotropic media,
which were extracted from the general strong-contrast expan-
sion (A.1) in [43, 44, 83].

A.1. Layered media

Under the condition specified in section 4.1, the scaled strong-
contrast approximations associated with layered media are
extracted from exact strong-contrast series (A.1) by choosing a
disk-like exclusion volume normal to the symmetry axis z that
involves the singularity of the dyadic Green’s function. Due to
the symmetries of layered media, one can decompose €, (k; )
into two orthogonal components ;- (k;) and €%(k;) for the
transverse and longitudinal polarizations, respectively. Thus,
we derive two independent approximations by truncating the
strong-contrast expansion and solving for €, (k; ) from this lin-
ear fractional form. Renormalization of the resulting formulas
with the reference phase for the optimal convergence, equi-
valent to using the effective Green’s function in [43], yields
scaled strong-contrast approximations for disordered layered
media at the three-point level. The reader is referred to [44,
83] for derivations.

Such a formula for the transverse polarization is given in
equation (32). The analogous formula for longitudinal polar-
ization is given as

—1
(k)= e (1 —dnﬁﬁm) : (A2)
Note that €i(k;) is independent of k;, since a travel-
ing longitudinal wave cannot exist under the aforemen-
tioned conditions. The static limit of equation (A.2)
is the harmonic mean of the local dielectric constants,
i.e. €2(0) = (¢h2/e2 + ¢1/e1)~", which is exact for any 1D
microstructure [63].

A.2. Transversely isotropic media

Under the condition specified in section 4.2, the scaled strong-
contrast approximations associated with transversely isotropic
media are extracted from exact strong-contrast series (A.1) by
choosing a needle-like exclusion volume aligned along y that
involves the singularity of the dyadic Green’s function. Due
to the symmetries of the problems, one can decompose &, (k1)
into two orthogonal components £/ (k;) and £ (k;) for TM
and TE polarizations, respectively. Thus, we extract two inde-
pendent approximations of £/£(k;) and e (k;) by truncating
the strong-contrast series at third-order terms. Solving for the
effective dielectric constants from these linear fractional forms
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and then renormalizing them with the optimal reference phase
[43, 107, 108], we finally obtain the scaled strong-contrast
approximations at the three-point level for disordered trans-
versely isotropic media.

es” (ki)

Such a formula for the TM polarization is
given in equation (36). Its TE analog is given as

29,285

o ) ) i) ek

where kIF = k;+/ 5,(325) /&1 is wavenumber in the optimal ref-

(2D)

erence phase for TE polarization, and ;" is the Bruggeman

() — 5+, by + ol + 2005 +0,) - (65 + )

(A.3)

approximation for 2D two-phase media [63, 101]. Here, the
second-order coefficient is given as ATE (k;e) = ATM (k;¢) /2;
see equation (37), and the third-order coefficient is defined as

2
1 1 -
AE (k) = — /d /d AP(q,,
3 (k;e) & lzg(zw)zl - q; . A7 (q;,49,)

We note that equation (A.3) is identical to the 2D formula
derived in [43], except for the reference phase. The current
choice for the reference dielectric constant el(;ZGD) offers slightly
better renormalization than 2D Maxwell-Garnett approxima-

tion employed in [43] because sl(ngD) makes the mean of the

depolarization tensors exactly zero, i.e. ¢1L§*) + ¢2L§*) =0.
The static limit (k; — 07) of equation (A.3) is the third-order
static strong-contrast approximation for d =2 [63]:

2

62 (1402857 ) = (1= 32) & [ 857
62 (1= 085" ) = (1= 32) & [ 85”]

TE(

TE(Q) = ¢ 5, (A5)

where (; is the three-point parameter that lies in the closed
interval [0, 1] [63].

Stealthy hyperuniform condition: ’j ) (k)‘ =0,

No Bragg peaks: ‘j(”)(k)‘ < C,

Large- |k| scaling from equation (19): ‘j ) (k)‘ <

(1 +aiP = #2) Iy + s =) (A4

Appendix B. Perfect transparency at the three-point
level

Here, we analytically show that the finite perfect transparency
interval given in (41) for SHU two-phase media with x,, (k) =
0 for k < K is exact through the third-order terms. The detailed
proofs presented here were only very briefly sketched in [83].
We first show the proof for transverse polarization
in the SHU layered medium (or, equivalently, 1D SHU
medium) in appendix B.l. We then show the proof for
TM polarization in the SHU transversely isotropic medium
(or, equivalently, 2D SHU medium) in appendix B.2. For
these proofs, we utilize the three general properties of
JW (k) for disordered SHU two-phase media in R¢:

for 0 < |k| < K, (B.1)
for any k, (B.2)

C/
for 0 < k|, (B.3)

|k‘(d+1)/2’
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where C’ and C are some finite positive numbers, and Q is a
large wavenumber much greater than K.

B.1. Layered media

In section 5, we analytically show that for SHU layered
medium with ¥, (k) = 0 for k < K, the finite perfect transpar-
ency interval given in equation (41) conjunction with equation
(42) is exact through the second-order terms. Here, we provide
detailed proof that this transparency interval is exact through
the third-order terms Ax-.

Without losing generality, one can rewrite the third-order
condition for perfect transparency as follows:

Im[Af (k1) =0, (k<K/2). (B.4)

Substituting Ag”) (q1,92) = — (TP (q1) TP (g2 — q1)
TP (=q2)) — ¢,°(27) 6(q1 — 02) X, (92) + X, (91) X, (42)

into the Fourier representation of A3L given in equation (34)
allows us to separate the third-order coefficient into three
terms:

1

Af (k1) =

[xv<q1>>z< 2) = &’ (2m)8(an
_—1 k4 {

where Ci (k) and C5 (k) depend on the two-point statistics,
whereas C; (k) depends on the three-point statistics:

Ct-(k) = [2mk ™2 FO (k)]z, (B.6)
=" an[wrar—¢] w). (B.7)
C;(k)z/oodql/wdqz <j(p)(611)j<”)(—611 +612)j(p)(—612)>.

[kt an)* =] [(k+q2)” — 2]
(B.8)

Therefore, we can prove equation (B.4) by showing that for
n=1,23,

Im[Cy (k)] =0 (k<K/2), (B.9)
where C-(k) are defined in equations (B.6)—(B.8), respect-
ively. We prove (B.9) by using the three general properties
of J¥) (k) for 1D disordered SHU two-phase media, given in
equations (B.1)-(B.3).

One can immediately see that (B.9) is true for n=1. For
k< K/2, (33) gives Im[F('®) (k)] = 0, and thus Im[C{- (k)] =
0. We then prove (B.9) for n=2. The integrand in (B.7)
is real-valued and nonnegative except at two singular points
(g1 =0 and —2k) because it is the product of the spectral
density X,(g1) and the square of the Green’s function [i.e.
(|k+ q1|* — K*)~2]. For k < K/2, however, this integrand has
no singularity because the stealthy hyperuniform condition
((B.1)) can completely remove these two singular points that
the Green’s function can arise. Furthermore, due to the prop-
erties of x,(k) ((B.2) and (B.3)), this nonnegative integ-
rand of (B.7) is bounded from above and decays rapidly

— 6,2 (2m) CH (k) — 4, CE (0}

19

déh/ dg>
( )/ k+611 ) — k2 (k+q)’ — K2

- 42) Xv(q2) — P <j(p) (—q1) TP (g1 — q2) j(p)(%)ﬂ

(B.5)

like |g;|~® for large |g,|. Therefore, for k < K/2, the real-
valued integrand of (B.7) is absolutely integrable, leading to
Im[C5 (k)] = 0.

We then prove (B.9) for n = 3. The crucial part of the proof
is to show that for k < K/2, the integrand in (B.8) is abso-
lutely integrable (i.e. the integral of its absolute value is well-
defined and finite) such that the Fubini-Tonelli theorem [109]
enables one to interchange the integration order in (B.8). Once
we show the integration order is interchangeable, using the
general property of the Fourier transform [i.e. Jw (k' )* =
j(f’)(fk’)], we can immediately show that for k < K/2,
C5 (k) is real-valued because

(7@ 3o o]

:[mdQI [mdqz [(k+q1)2—k2} [(k+q2)2—k2}

e e (T TV @ - ) TV (@)

f/ioodcn/ioodqz [(k—i—qu)z—kz} [(k—i—qz)z—kz}

_ /oo dqz/m " (TP(g2) TP (=2 +41) TP (~q1))
oo Jeo [k @2)* = 2] [+ 1) = ]

= Cy (k). (B.10)

Now let us show that the integrand in equation (B.8)
is absolutely integrable if k< K/2. We first reduce the
absolute value of this integrand in a simpler form:
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1 1
(k+q1)° =k (k+q2)°

D <j(p)(6h)j(p)(*ﬁh +42)j(p)(¢]2)>‘

Voo larar—a| (7@l ca v |79 )
s (k+q11)2—k2 (k+q21)2—k2 C<’j@)(q‘)Hj(p)(_‘I2)’>’ (B.11)

where we have used equation (B.2). If the integral of (B.11) is bounded from above by a finite constant, then we prove that the
integrand in (B.8) is absolutely integrable.

/_O;dql /_O;dqz (k+qll)2—k2 (k+6121)2—k2 (a7 )
- 70) ’
:C< /oodql(qul)(qu)’kz > (B.12)

d C'/lai] o [ -1
We then compute the integral that appears in the upper bound o<lail g ’(k n 41)2 - kz‘ = e a q12 (q1 + 2k)
on equation (B.12):

laetel2)]

’j (g1 ‘ (B.15)
b
[ a7 -]

Combining equations (B.10)—(B.15) shows that the integrand

/ / / dg “7 (p) (41 ‘ in (B.8) is absolutely integrable, leading (B.9) for n =3 to be
1 .
1<k Jr<gil<o  Jo<|al ‘( true as noted in (B.10).

k+q ) — k2 ‘
<0+ / d <
< q1 B.2. Tr ly isotropi di
K<|q1|<Q ‘(k +q1) - kz‘ Fansversely isotropic media
/gl In section 5, we analytically show that for SHU transversely
+ / dq —Zl, (B.13) isotropic systems with x, (k) =0 for k<K, the finite per-
0<|qi] ’(k +q1) — k2‘ fect transparency interval, equation (41) conjunction with

equation (43), is exact through the second-order terms. Here,
we provide detailed proof that this transparency interval is
exact through the third-order terms.

Without losing generality, we can rewrite the third-order
condition for the perfect transparency as follows:

where we have applied equations (B.1)-(B.3) sequentially in
the three integrals. It is important to note that the first integral
over —K < q; < K is divergent unless the system is stealthy
hyperuniform. The second integral in (B.13) is positive and
bounded from above, as shown below:

Im[A]Y(k;1)] =0, (k<K/2). (B.16)

dgy ———— <2C / dg) ———~
/Kg|ql|<Q ‘(lﬁqu)z — k2’ -0 q1 (q1 + 2k) As in equation (B.5), we decompose AgM given in
equation (38) into three terms:

_C (K 0-%
Tk \K—-2 Q ' "
B.14) A3 (k1)
-1 k4 |: 2
= C™ (k) — ¢,2 270)> CIM (k) — ¢, CPM (k) |,
The third integral in (B.13) is also positive and bounded from bp (27) () =0y (2m) Gk — 6, G0
above, as shown below: B.17)
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where CI™ (k) and C3™ (k) depend on the two-point statistics,
whereas C3¥ (k) depends on the three-point statistics:

273 :
C,TM(k)E[fkTF(ZD)(k)} , (B.18)
2
™ (k) = —_ | % , 1
G (k) /deql k§f+q12k2] Xv(q1) (B.19)

(TP(@) T (4, +a) TV (~a,))

(|k§+ qf’ - kz) (Ik.fy +q,* - kz)
(B.20)

which are the 2D counterparts of equations (B.6)—(B.8). We
now prove (B.16) by showing that for n = 1,2, 3,

Im[CM(k)] =0 (k<K/2). (B.21)

Because the proof of equation (B.21) is analogous to (B.9), we
outline how to prove it by using the three general properties
of J ) (k) for 2D disordered SHU two-phase media, given in
equations (B.1)—(B.3).

One can immediately see that (B.21) is true for n=1
because Im[F(*®) (k)] = 0 for k < K/2, which is identical to
the perfect transparency at the two-point level. One can also
immediately show (B.21) for n=2 because the integrand
in (B.19) is (i) real-valued and (ii) absolutely integrable for k <
K /2. The condition (ii) can be confirmed because this integ-
rand has no singularity due to the stealthy hyperuniform condi-
tion ((B.1)), and its absolute value is also bounded from above
and decays rapidly as |q;| increases due to equations (B.2)
and (B.3).

We now outline the proof of (B.21) for n=3. Similar to
appendix B.1, the crucial part of this proof is to show that for
k < K/2, the absolute value of the integrand in (B.20) is integ-
rable (i.e. absolutely integrable), and thus the value of CI¥ (k)
is independent of the integration order due to the Fubini-
Tonelli theorem [109]. Once we enable the interchange of the
integration order, we can immediately show that Im[C5- (k)]
0 for k < K/2, as in equation (B.10).

One can show that the integrand in (B.20) is absolutely
integrable, as we did so in B.1. Roughly speaking, the proof is
based on equations (B.1)—(B.3). We first show that the integ-
rand in equation (B.20) has no singularity because while all
possible singularities of the Green’s functions in this integ-
rand lie along two circles [i.e. |q; + ky| = kand |q, + ky| = k],
(TV (@) T (-4, +a,) TP (~q,)) =0 along these sin-
gularities because of (B.1). In addition, due to equation (B.2),
the absolute value of the integrand in (B.20) is bounded

from above for any q; and . Furthermore, because of

equation (B.3), the absolute value of the integrand vanishes as
-7/2

fast as or faster than |q,| |q2\77/2 for large |q,| and |q,].
These three observations directly show that the integrand is
absolutely integrable.
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