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Hyperuniformity of maximally random jammed packings of hyperspheres across spatial dimensions

Charles Emmett Maher ,1 Yang Jiao ,2,3 and Salvatore Torquato 1,4,5,6

1Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
2Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA

3Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
4Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

5Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA
6Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA

(Received 17 September 2023; accepted 16 November 2023; published 7 December 2023)

The maximally random jammed (MRJ) state is the most random (i.e., disordered) configuration of strictly
jammed (mechanically rigid) nonoverlapping objects. MRJ packings are hyperuniform, meaning their long-
wavelength density fluctuations are anomalously suppressed compared to typical disordered systems, i.e., their
structure factors S(k) tend to zero as the wave number |k| tends to zero. Here we show that generating high-
quality strictly jammed states for Euclidean space dimensions d = 3, 4, and 5 is of paramount importance in
ensuring hyperuniformity and extracting precise values of the hyperuniformity exponent α > 0 for MRJ states,
defined by the power-law behavior of S(k) ∼ |k|α in the limit |k| → 0. Moreover, we show that for fixed d
it is more difficult to ensure jamming as the particle number N increases, which results in packings that are
nonhyperuniform. Free-volume theory arguments suggest that the ideal MRJ state does not contain rattlers,
which act as defects in numerically generated packings. As d increases, we find that the fraction of rattlers
decreases substantially. Our analysis of the largest truly jammed packings suggests that the ideal MRJ packings
for all dimensions d � 3 are hyperuniform with α = d − 2, implying the packings become more hyperuniform
as d increases. The differences in α between MRJ packings and the recently proposed Manna-class random
close packed (RCP) states, which were reported to have α = 0.25 in d = 3 and be nonhyperuniform (α = 0) for
d = 4 and d = 5, demonstrate the vivid distinctions between the large-scale structure of RCP and MRJ states in
these dimensions. Our paper clarifies the importance of the link between true jamming and hyperuniformity and
motivates the development of an algorithm to produce rattler-free three-dimensional MRJ packings.

DOI: 10.1103/PhysRevE.108.064602

I. INTRODUCTION

Disordered hyperuniform many-particle systems in d-
dimensional Euclidean space Rd are emerging exotic amor-
phous states of matter in which fluctuations are anomalously
suppressed at infinite wavelengths compared to ordinary liq-
uids [1,2]. Such unusual disordered systems play a vital role
in a variety of fields and contexts, including wave transport
in complex media [2–7], structural glasses and supercooled
liquids [8,9], vortices in superconductors [10,11], random ma-
trix theory [2,12], quantum systems [2,13,14], and biological
systems [15,16], among many other examples. A hyperuni-
form many-particle system at number density ρ is one in
which the local number variance σ 2

N (R) ≡ 〈N (R)2〉 − 〈N (R)〉2

of particles within a spherical observation window of radius
R grows in the large-R limit slower than Rd , where angular
brackets denote an ensemble average [1,2]. Equivalently, a
many-particle system is hyperuniform if the structure factor
S(k) tends to zero as the wave number k ≡ |k| tends to zero,
i.e.,

lim
|k|→0

S(k) = 0. (1)

Disordered packings in Rd , which are collections of
nonoverlapping particles, are important models in, e.g.,

soft matter [17–22], materials science [17,23,24], and bi-
ology [25–27] (see Refs. [28,29], and references therein
for a more exhaustive list of examples). Disordered pack-
ings of spheres have been shown to exhibit hyperuniformity
when reaching certain putatively jammed (mechanically rigid)
states [30–39].

Torquato and Stillinger [1] conjectured that infinitely large
packings of identical frictionless hard spheres that are sat-
urated and strictly jammed are hyperuniform. A packing
is strictly jammed if there is no possible collective rear-
rangement of some finite subset of particles, and no volume
nonincreasing deformation that can be applied to the packing
without violating the impenetrability constraints of the parti-
cles. A packing is saturated if there is no available space to add
another particle of the same type to the packing without result-
ing in interparticle overlaps. It has previously been reported
that maximally random jammed (MRJ) packings of identical
spheres are hyperuniform [1,36,37,40–43]. The MRJ states
of several other particle geometries [43–48] have also been
characterized. The MRJ packing state is the most disordered
packing (as measured by some set of scalar order metrics) that
is also subject to strict jamming [22]. The ideal MRJ state is
rattler free, which is expected to yield perfect hyperuniformity
and the most disordered strictly jammed state [36,49]. This
notion is supported by free-volume theory arguments [49],
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which predict that S(0) = 0 at the jammed state in the absence
of defects (i.e., rattlers).

A stringent test of the conjecture for MRJ packings
requires generation of large packings to access the long-
range (small wave number) behavior while maintaining strict
jamming. For this purpose, Donev et al. [37] generated three-
dimensional (3D) MRJ packings with N = 106 monodisperse
spheres using a modified Lubachevsky-Stillinger (LS) event-
driven algorithm [50] and by fitting the data on a linear scale,
concluded they were hyperuniform with α = 1. Here, α is
the power-law scaling of the small-wave-number behavior of
S(k), specifically, S(k) ∼ |k|α as |k| → 0. However, as we
show below, these packings are not truly strictly jammed,
which influences the value of α extracted. In recent work,
Wilken et al. [32] found that fitting S(k) for the packing from
Ref. [37] on a logarithmic scale reveals a substantially lower
α (∼0.25). Indeed, we also find that fitting this S(k) on a
logarithmic scale results in a smaller value of α compared to
a direct fit of the linear data (cf. Fig. 6). Moreover, previous
studies have found that sphere packings with N � 1000 pro-
duced using the LS algorithm are unable to attain isostaticity
[43,51]. In addition, work from Skoge et al. [42] suggests
that four-dimensional (4D) and five-dimensional (5D) MRJ
packings generated via an LS algorithm are also hyperuni-
form but, similarly to Donev et al. [37], did not ensure strict
jamming. It is noteworthy that very tiny collective particle
displacements in a nonhyperuniform system can lead to hy-
peruniform systems [2], dispelling any notion that similarities
in local statistics always implies similarities in global (hyper-
uniform) statistics. This example lends additional support to
our hypothesis that the small changes in the local packing
structure that occur in the vicinity of the strict jamming point
can drastically impact the hyperuniformity and precise value
of α for a given packing.

Hyperuniform many-particle systems are poised at a crit-
ical point where large-scale density fluctuations are anoma-
lously suppressed such that the direct correlation function
is long-ranged [1,2]. While packings can often be generated
that have a high reduced pressure and hence appear jammed
by conventional tests, rigorous jamming tests reveal that they
often are not due to a type of “critical slowing down” and thus
have deviations from perfect hyperuniformity [36]. Critical
slowing down in this context means the packing’s rearrange-
ments in configuration space become locally confined by
high-dimensional “bottlenecks” from which escape is a rare
event. Such bottlenecks become increasingly more difficult to
escape from as the size of the packing increases [36].

Current numerically produced MRJ-like sphere packings
invariably have a small concentration of rattlers φR [42,52–
55], which are particles that are not jammed but are locally
imprisoned by their neighbors, which decreases with dimen-
sion [42]. The remainder of the jammed spheres are referred
to as the backbone. The value of φR for a given d is also known
to be affected by the protocol used for jamming [56]. While
one would not generally expect exact hyperuniformity for
disordered packings with rattlers, we have shown that when
jamming is ensured, the packings are very nearly hyperuni-
form, and deviations from hyperuniformity correlate with an
inability to ensure jamming, suggesting that strict jamming
and hyperuniformity are indeed linked [36].

Herein, we endeavor to more carefuly study and char-
acterize the hyperuniformity of MRJ sphere packings by
generating and analyzing large MRJ sphere packings in
d = 3, 4, 5 with more stringent jamming criteria than
Refs. [37,42]. To generate these packings, we employ a hy-
brid scheme where we first produce a nearly jammed sphere
packing using the LS algorithm, which is used as an initial
condition for the Torquato-Jiao (TJ) linear programming (LP)
jamming algorithm [56], which is known to reliably produce
strictly jammed packings [41,52,53,57].

To characterize the extent to which the hybrid scheme can
bring a packing of N identical hyperspheres to strict jamming
in R3,R4,R5 and how this relates to ensuring hyperunifor-
mity, we execute the following steps:

(1) We generate ensembles of 3D, 4D, and 5D hyper-
sphere packings with different N and show that as N increases,
ensuring jamming becomes more difficult, which results in a
degradation of the hyperuniformity of the ensemble.

(2) For a fixed N and d , we show that as the jamming
packing fraction φJ is approached, both the quality of the
jammed backbone and degree of hyperuniformity improve.

(3) In each spatial dimension d = 3, 4, 5, we use these
results to determine the largest N that reliably yields strictly
jammed packings and characterize their hyperuniformity.

(4) We use rigorous LP jamming tests [36,58] on 3D MRJ
packings with N = 2500 to quantify the degree to which these
packings are strictly jammed and demonstrate that the hybrid
scheme reliably produces strictly jammed packings.

Subsequently, we compute S(k) of these large high-quality
jammed packings to extract α. We first directly fit the small-
k behavior of S(k) on a logarithmic scale to determine the
power-law scaling in the vicinity of the origin. The diffusion
spreadability, which is a dynamical probe that directly links
time-dependant diffusive transport with the microstructure of
a two-phase medium [59], has been used profitably to extract
the exponent α from a variety of hyperuniform and nonhy-
peruniform systems [43,59–61]. Here, we fit the long-time
behavior of the excess spreadability S (∞) − S (t ) to a power
law of the form S (∞) − S (t ) ∼ t (d+α)/2 to extract α from
these packings.

We find that the quality of the jammed backbone of 3D
MRJ sphere packings increases sharply in the vicinity of
the strict jamming point and the S(k) has a concomitant
decrease in the magnitude of its small-k behavior, indicat-
ing an increase in hyperuniformity. The largest 3D packing
size that reliably reaches strict jamming is N = 5000, and
packings with larger N have decreased backbone quality and
degraded hyperuniformity. We find that the N = 5000 3D
MRJ packings have a scaling exponent α = 0.973 ± 0.02 and
φR = 1.6%. This α is slightly smaller than the expected α = 1
[2], which we surmise is due to the nonzero concentration of
rattlers. Moreover, this value of α is larger than those extracted
from the logarithmic fitting analysis of the S(k) given by
Donev et al. [37] reported in Ref. [32] and Fig. 6. This clearly
demonstrates the importance of achieving strict jamming to
the hyperuniformity scaling of a packing.

For 4D and 5D MRJ packings, we find that the backbone
quality and degree of hyperuniformity are more susceptible
to changes in the degree of strict jamming when compared to
the 3D packings. This suggests that achieving strict jamming
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is more important to ensuring hyperuniformity as d increases.
For the largest 4D (N = 10 000) and 5D (N = 20 000) strictly
jammed packings, we find α = 1.946 ± 0.013 and 2.926 ±
0.12, respectively. As will be explained in Sec. V B, these
values suggest the scaling relation α = d − 2 for d � 3. Each
of these α values are greater than those recently reported for
3D [32], 4D, and 5D [33] random close packed (RCP) states,
which vividly demonstrates that the jamming requirement dif-
ferentiates the MRJ state from RCP states.

II. BACKGROUND

A. Pair statistics

Systems of point particles in Rd are fully spatially char-
acterized by an infinite set of n-particle correlation functions
ρn(r1, . . . , rn), which are proportional to the probability of
finding n particles at the positions r1, . . . , rn [62]. For sta-
tistically homogeneous systems, ρ1(r1) = ρ and ρ2(r1, r2) =
ρ2g2(r), where r = r1 − r2, and g2(r) is the pair correlation
function. If the system is also statistically isotropic, then
g2(r) = g2(r), where r = |r|. The ensemble-averaged struc-
ture factor S(k) is defined as

S(k) = 1 + ρh̃(k), (2)

where h̃(k) is the Fourier transform of the total correlation
function h(r) = g2(r) − 1.

For a single periodic point configuration with N particles
at positions rN = (r1, . . . , rN ) within a fundamental cell F of
a lattice �, the scattering intensity S(k) is given by

S(k) = | ∑N
j=1 exp(−ik · r j )|2

N
. (3)

In the thermodynamic limit, an ensemble of N-particle con-
figurations in F is related to S(k) by

lim
N,VF →∞

〈S(k)〉 = (2π )dρδ(k) + S(k), (4)

where VF is the volume of the fundamental cell and δ is
the Dirac delta function [1]. For finite-N simulations under
periodic boundary conditions, Eq. (3) is used to compute S(k)
directly by averaging over configurations.

One can treat packings as two-phase heterogeneous media
by considering the space between the particles as the ma-
trix phase V1 and the particles themselves as phase two V2

[63]. The packing microstructure can be fully characterized
by a countably infinite set of n-point probability functions
S(i)

n (x1, . . . , xn), defined by [17]

S(i)
n (x1, . . . , xn) =

〈
n∏

j=1

I (i)(x j )

〉
, (5)

where I (i) is the indicator function for phase i:

I (i)(x) =
{

1, x ∈ Vi

0, else. (6)

The functions S(i)
n (x1, . . . , xn) give the probability of finding

n points at positions (x1, . . . , xn) in phase i. Hereafter, we
drop the superscript i and restrict our discussion to the particle
phase V2.

For statistically homogeneous media, Sn(x1, . . . , xn) is
translationally invariant and, in particular, S1 is independent
of position and equal to the packing fraction φ, while the two-
point correlation function S2(r) depends on the displacement
vector r ≡ x2 − x1. The corresponding two-point autocovari-
ance function χV (r) [17,64,65] is obtained by subtracting the
long-range behavior from S2(r):

χV (r) = S2(r) − φ2. (7)

The nonnegative spectral density, χ̃V (k), is defined as the
Fourier transform of χV (r) [17]. For a monodisperse packing
of spheres with radius a, it is known that [17,66,67]

χ̃V (k) = ρ|m̃(k; a)|2S(k), (8)

where m̃(k; a) is the Fourier transform of the particle indicator
function (form factor) defined as

m(r; a) =
{

1, |r| < a
0, otherwise, (9)

where r is a vector measured with respect to the particle
centroid.

For single finite configurations of N identical hard spheres
under periodic boundary conditions in F with volume VF ,
χ̃V (k) can be expressed as [31]

χ̃V (k) =
∣∣∑N

j=1 exp(−ik · r j )m̃(k; a)
∣∣2

VF

(k 	= 0),

(10)

where {r j} denotes the set of particle centroids. Equation (10)
is used to compute the spectral densities of the MRJ sphere
packings.

B. Strict-jamming criteria

A jammed hard particle packing is one in which each parti-
cle makes contact with its neighbors in such a way that certain
levels of mechanical stability are conferred to the packing
[68]. Such packings can be placed into three mathematically
precise categories based on the type of mechanical stability
conferred, which in order from least to most stable are [28,68]:
(1) Local jamming: no individual particle can be moved while
holding all other particles fixed. (2) Collective jamming: the
packing is locally jammed, and no collective motion of a
finite subset of particles is possible. (3) Strict jamming: the
packing is collectively jammed and all volume-nonincreasing
deformations are disallowed by the impenetrability constraint.

Of particular interest are MRJ packings of spheres under
the strict jamming constraint. Such disordered states can be
viewed as prototypical glasses because they are maximally
disordered, perfectly rigid (have infinite elastic moduli), and
perfectly nonergodic [22,28]. MRJ sphere packings are known
to be isostatic [51,69], which means that the total number of
interparticle contacts (constraints) in the packing is equal to
the total number of degrees of freedom and that all of the
constraints are linearly independent. For a finite, rattler-free,
sphere packing in a periodic deformable simulation box to
be strictly jammed, the total number of interparticle contacts
Z (N ) must be [51,57]

Z (N ) = d (N − 1) + d (d + 1)/2. (11)
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Equivalently, each sphere must have 2d − 2d/N + d (d +
1)/N contacts on average, which is the minimal number of
contacts to constrain all degrees of freedom available to the
particles.

In practice, disordered jammed packings contain a small
concentration of rattlers. Monodisperse 3D sphere packings
generated using the TJ algorithm have φR ∼ 1.5% [53] and
early results indicate the rattler fraction decreases as d in-
creases [56]. Jamming precludes the existence of rattlers
[28,68]. Nevertheless, it is the significant majority of particles
that confers mechanical rigidity to the packing, and, in any
case, the rattlers could be removed (in computer simulations)
without disrupting the remaining jammed backbone [28,29].

To rigorously test if a frictionless sphere packing is strictly
jammed, Donev et al. [58] introduced a method that uses
randomized sequential LP. The algorithm maximizes the work
done by random body forces on spheres in the packing dis-
placing them and straining the simulation box while obeying
the constraints that the spheres do not overlap and the volume
of the box does not increase. Atkinson et al. [36] improved
on this scheme by instead choosing body forces that are more
likely to induce local rearrangements of particles, and found
that the LP scheme can more accurately determine if a packing
is jammed than standard methods (e.g., the pressure leak test
[58,68,70,71]).

For packings with ideal contacts, i.e., ones where interpar-
ticle contacts are exact, any sphere that moves is considered
a rattler and if every sphere is a rattler, then the packing is
unjammed. Numerically produced packings, however, cannot
have true contacts and thus one has to account for the fact
that even the spheres comprising the jammed backbone will be
able to move a small amount. Therefore, we instead consider
the degree to which a packing is strictly jammed by examining
the maximum Euclidean distance a backbone sphere moves
from its original location when these body forces are applied
over the course of the algorithm described in Ref. [36].

Previous studies have also judged how well-jammed a
packing is by examining the plateau in the cumulative coor-
dination function Z (r), a quantity related to the integral of
the pair correlation function g2(r) [32,51], or similarly, the
gap between the contact tolerances which result in an exactly
isostatic jammed backbone and a backbone with a single addi-
tional contact [53]. While these measures correctly determine
the smallest contact tolerance associated with an isostatic,
strictly jammed backbone, they often underestimate the size of
the largest gap because detection of spurious interparticle con-
tacts between the backbone spheres make the packing appear
hyperstatic. Such additional intrabackbone contacts are found
at smaller contact tolerances as the packing size increases
[53], and thus Z (r) is not useful when assessing the quality
of large jammed sphere packings.

C. Hyperuniformity

Consider systems characterized by a structure factor with a
radial power law in the vicinity of the origin:

S(k) ∼ |k|α for |k| → 0. (12)

For hyperuniform systems, α > 0, and its specific value de-
termines three different large-R scaling behaviors or classes

of the number variance [1,2,72]:

σ 2
N (R) ∼

⎧⎨
⎩

Rd−1 α > 1, class I
Rd−1ln(R) α = 1, class II
Rd−α α < 1, class III.

(13)

Classes I and III describe the strongest and weakest forms of
hyperuniformity, respectively. Such classes apply analogously
to spectral densities possessing a radial power-law form in the
vicinity of the origin [67], i.e.,

χ̃V (k) ∼ |k|α for |k| → 0. (14)

These classes instead correspond to a large-R scaling behavior
volume-fraction variance, which considers the volume frac-
tion of a desired phase in an observation window of radius
R. The precise scaling form (14) contributes to the deter-
mination of diffusion spreadability [59], nuclear magnetic
resonance and magnetic resonance imaging measurements
[73–75], rigorous upper bounds on the fluid permeability
of hyperuniform two-phase media [76], the electromagnetic
wave characteristics of composites beyond the quasistatic
regime [77], photonic band gaps in disordered media [78], and
the optical transparency of 1D disordered media [79].

To properly ascertain the hyperuniformity of a packing,
one must run simulations with a large number of particles
N to access the small-k regime of S(k) or χ̃V (k). This is
complicated by the nosiness of small-k data, numerical and
protocol-dependent errors, and reliance on extrapolations of
such uncertain data to the k → 0 limit [36]. It is also known,
however, that the “critical slowing down” on approach to
jammed states becomes more difficult to overcome as N in-
creases because the complex collective motions required for
jamming become practically impossible [36,80,81]. Thus, we
generate putatively MRJ packings with a range of N to deter-
mine the largest size at which we can still ensure high-quality
strict jamming.

D. Spreadability

Recent work [43,59–61] has revealed that the time-
dependent spreadability is a powerful dynamic-based figure of
merit to probe and classify the spectrum of possible mi-
crostructures of two-phase media across length scales. Con-
sider the time-dependent problem describing the mass transfer
of a solute between two phases and assume that the solute
is initially only present in one phase, specifically the particle
phase, and both phases have the same D. The fraction of total
solute present in the void space as a function of time S (t ),
is termed the spreadability because it is a measure of the
spreadability of diffusion information as a function of time.
Qualitatively, given two different two-phase systems at some
time t , the one with a larger value of S (t ) spreads diffusion
information more rapidly. Recently, Torquato showed that the
excess spreadability S (∞) − S (t ) can be expressed in Fourier
space in any dimension d as [59]

S (∞) − S (t ) = dωd

(2π )dφ

∫ ∞

0
kd−1 χ̃V (k) exp[−k2Dt]dk,

(15)
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where ωd is the volume of a d-dimensional unit sphere:

ωd = πd/2

�(1 + d/2)
. (16)

In the particular case of two-phase media with χ̃V (k) that
obeys a power-law scaling in the k → 0 limit,

lim
k→0

χ̃V (k) = B|k�|α, (17)

where B is a positive dimensionless constant, � repre-
sents some characteristic microscopic length scale, and α ∈
(−d,∞), the long-time behavior of the excess spreadability
can be written as [59]

S (∞) − S (t ) ∼ 1/t (d+α)/2. (18)

Thus, one can use the spreadability to ascertain and classify
the hyperuniformity of such two-phase media. Here, we use
Eq. (15) to compute S (∞) − S (t ) for the sphere packings
and fit the long-time behavior using the algorithm detailed
in Ref. [61]. We note that, unlike direct fitting methods, the
spreadability does not require a choice of wave numbers to fit
over, nor a fit of a chosen form, and thus is less susceptible to
errors introduced by these choices [43,59–61].

III. PACKING GENERATION

To produce the putatively MRJ packings examined here,
we start by randomly placing nonoverlapping (hyper)spheres
in a (hyper)cubic simulation box with an initial packing frac-
tion φi = 0.2 (d = 3), 0.1 (d = 4), 0.05 (d = 5). We then
use the implementation of the LS algorithm given in Ref. [50]
to bring these packings to a reduced pressure of 75 at a
dimensionless expansion rate of � = dD(t )/dt

√
m/(kBT ) =

0.1, where m is the mass of the sphere and D(t ) is the
time-dependent sphere diameter. The particle diameter at the
end of the LS simulation is denoted by D. This densified,
but unjammed, state is then used as an initial condition in
the TJ algorithm. A detailed description of the sequential
LP algorithm, which solves the adaptive shrinking-cell prob-
lem, can be found in Ref. [56]. Here, we use an influence
sphere size γ = D/40, a maximum translation magnitude of
�x � D/200, and a maximum box strain magnitude of ε �
D/200. Simulations are terminated when the packing fraction
φ decreases less than 10−15 over the course of two LP steps.
Note that the specific choice of the terminal pressure chosen
for the LS algorithm above does not significantly impact
the fraction of rattlers after the execution of the TJ algo-
rithm. We generated ensembles of 50 N = 2500 packings, 50
N = 5000 packings, 50 N = 16000, and 10 N = 25000 pack-
ings in d = 3; and generated ensembles of configurations for
N = 5000, N = 10000, N = 20000, and N = 25000 packings
in d = 4, and ensembles of configurations for N = 10000,
N = 20000, and N = 50000 packings in d = 5. At the ter-
mination criterion, however, 4 N = 16 000 3D packings did
not reach jamming and were left out of ensemble averaged
results. Additionally, we note here that Artiaco et al. intro-
duced another LP jamming algorithm in 2022 called Chain of
Approximate Linear Programming for Packing Spherical Ob-
jects (CALiPPSO) [82]. The key difference between TJ and
CALiPPSO is that CALiPPSO forgoes shear deformations

to improve efficiency and thus cannot produce the strictly
jammed packings that we are interested in here.

IV. GENERATION AND CHARACTERIZATION
OF 3D MRJ SPHERE PACKINGS

In the following subsections, we examine the relationship
between hyperuniformity and proximity to jamming to show
the importance of achieving strict jamming to ensure hype-
runiformity and the precise determination of the exponent α.
Additionally, we demonstrate the relationship between system
size and jamming to find the largest packings for which we
can ensure strict jamming. To do this, we generate 3D MRJ
spheres packings and conduct two different numerical experi-
ments. First, for a fixed N we track the quality of the jammed
backbone and the small-k behavior of S(k) as a function of φ

as the strict jamming point is approached. Then, we examine
how these same two structural descriptors change as a func-
tion of the number of spheres N for the putatively jammed
states. We also confirm that the TJ algorithm can reliably
generate packings with putatively strictly jammed backbones
using the LP-based pop jamming test [36].

A. Relationship between jamming quality and hyperuniformity

The TJ LP algorithm is formulated such that it will yield a
strictly jammed packing to within a small numerical tolerance
(see Ref. [56] for details about the formulation and tolerances
of the algorithm). We verify this claim by applying a rigorous
LP jamming test to a set of putatively strictly jammed pack-
ings generated using the TJ algorithm. The LP jamming test
introduced by Donev et al. [58], while rigorous, requires a
great deal of computational resources to carry out due to the
random choice of applied body forces. The pop-test imple-
mentation of this algorithm by Atkinson et al. [36] increases
the efficiency of this process by using a choice of body forces
that are likely to result in a rearrangement using a heuristic de-
scribed in detail in Ref. [36], which enables one to determine
strict jamming with a high degree of accuracy. We applied
the pop test to an ensemble of 98 N = 2500 putatively MRJ
sphere packings (with rattlers removed) generated using the
hybrid scheme and tracked the average backbone translation
from each applied body force. We found that, at worst, a
packing allowed an average backbone translation on the order
of 10−6D, while the median value was on the order of 10−9D.
Thus, we have numerical evidence that the hybrid LS-to-TJ
packing scheme reliably produces packings with high-quality
strictly jammed backbones.

To circumvent the issues stated earlier regarding the use of
Z (r) as a measure of jamming quality, we instead examine the
number of backbone spheres Nb(x) as a function of the contact
tolerance x = (r/D) − 1. To compute Nb(x), we determine
all of the intersphere contacts at a given contact tolerance,
iteratively remove the spheres which are rattlers, and count
the remaining jammed spheres. In the calculation of Nb(x), we
use the local jamming definition for a rattler, i.e., if a sphere
has at least d + 1 contacts that are not all on the same hemi-
sphere of the particle, it is not a rattler [83].While this method
will underestimate the total number of rattlers, a backbone
sphere will never be mistaken for a rattler until the contact
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(a) (b)

FIG. 1. The (a) number of backbone spheres Nb(x) as a function
of the scaled interparticle gap r/D − 1, where D is the particle
diameter for several fractions of the jamming packing fraction
φJ = 0.638 and (b) corresponding structure factors S(k) as a function
of the scaled wave number kD/2π in R3 with N = 2500. The inset
of (b) shows the change in the structure factor occurs mostly on the
large length scales, while the small- and intermediate-scale behavior
does not change significantly.

tolerance x becomes smaller than the numerical tolerance of
the TJ algorithm because this local definition is necessary, but
not sufficient, to determine rattlers that are not collectively
or strictly jammed. This measure is robust to the spurious
additional contacts counted between the backbone spheres
when N becomes large and the large-gap tolerance behavior
instead only changes when a rattler is erroneously considered
a backbone sphere. Figure 1(a) demonstrates that as the puta-
tive jamming packing fraction φJ is approached, the plateau
in Nb(x) increases in width dramatically. The Nb(x) curve at
jamming in Fig. 1(a) (purple line) indicates higher quality
jamming than previous studies of LS-derived packings, which
are not isostatic [51], and biased random organization (BRO)-
derived packings, which only have isostatic backbones over
a small range of contact tolerances near ∼10−3D [32,33].
In these cases, the Z (x) curves indicate the packings are far
from the jamming point and thus hyperuniformity cannot be
enforced [49]. Moreover, this implies that the high-quality
strict jamming shown via the pop test and the broad plateau
in Nb(x) are related.

This increase in backbone quality is accompanied by a
monotonic decrease in the magnitude of the small-k behavior
of S(k) as φJ is approached [see Fig. 1(b)], i.e., the packings
transition from nonhyperuniform to hyperuniform as jamming
is approached. In addition, only the small-k behavior of S(k) is
altered this close to jamming, which indicates that even small
deviations from jamming affect the large- and intermediate-
scale structure of packings. Thus, we clearly establish that
achieving strict jamming ensures hyperuniformity, which is
very important for the precise determination of α in subse-
quent sections. This increase in hyperuniform character on
approach to jamming is corroborated by packings produced
using only LS [40,41] and only TJ [41]. These findings imply
that, even though large 3D sphere packings produced using
only the LS algorithm [37] and 3D biased-random organiza-
tion sphere packings [32] are similar in disorder and φ to the
hybrid packings examined here, they can still have a value
of α much less than 1 if they are not truly jammed.As noted
in the Introduction, previous work demonstrated that very
tiny collective particle displacements in a nonhyperuniform
system can lead to hyperuniform systems [2], which supports
the notion that the small changes in packing structure that

(a) (b)

FIG. 2. The (a) number of backbone spheres Nb(x) scaled by
the number of spheres as a function of the scaled interparticle
gap r/D − 1, where D is the particle diameter and the (b) corre-
sponding structure factors S(k) as a function of the scaled wave
number kD/2π in R3 for packings with N = 2500 (φJ = 0.638),
N = 5000 (φJ = 0.639), N = 16000 (φJ = 0.639), and N = 25 000
(φJ = 0.639). (b) has a dashed cyan line indicating α = 0.97 scaling.

occur in the vicinity of the strict jamming point can drastically
impact the hyperuniformity and precise value of α for a given
packing.

B. Relationship between system size and hyperuniformity

The size of the largest strictly jammed packing we can pro-
duce is constrained by the performance of the TJ algorithm. To
determine the largest packing which can reliably achieve strict
jamming and, thus, ensure hyperuniformity, we produced en-
sembles of N = 2500, 5000, 16 000, and 25 000 spheres using
the same set of parameters that ensure high-quality jamming,
while also being computationally feasible, and examined the
behavior of their Nb(x) [Fig. 2(a)] and S(k) [Fig. 2(b)]. The
different plateau heights occur due to small changes in the
rattler fraction between the different ensembles of configura-
tions. We find that N = 2500 and 5000 have similar backbone
qualities and, correspondingly, similar S(k). In addition, the
precise values of α we extract from the excess spreadabil-
ity and direct fitting methods agree within error: the excess
spreadability (direct fit) gives α = 0.967 ± 0.020 (0.953) for
the N = 2500 ensemble and α = 0.973 ± 0.020 (0.987) for
the N = 5000 ensemble. For these direct fits, we choose a
range of k values such that removing or adding another k value
to either end of the fit range does not significantly change α.
Note that the precise value of α is sensitive to the exact choice
of fitting range and, thus, direct fitting of S(k) or χ̃V (k) is a less
robust way of extracting α compared to the spreadability.The
uncertainty in these α measurements is the standard deviation
of the α values extracted from the excess spreadabilities for
each packing individually. Note that such values of α are not
only appreciably higher than the LS-or BRO-derived expo-
nents (which have a lower strict-jamming quality) but neatly
equal to unity. We suggest that the deviation from unity is
due to the presence of a small concentration of rattlers (i.e.,
defects) and so we expect that α = 1 for ideal 3D MRJ states,
which is consistent with the results reported in Ref. [41].
The backbone quality for the N = 16 000 and N = 25 000
packings is worse, which is evident from the shorter plateau
in Nb(x) and structure factors that indicate the packings are
nonhyperuniform. Thus, N = 5000 is the largest N for which
we have an ensemble of packings with high-quality strictly
jammed backbones. The results in Fig. 2 further demonstrate
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(a) (b)

FIG. 3. The (a) number of backbone spheres Nb(x) as a function
of the scaled interpaticle gap r/D − 1, where D is the particle diam-
eter for several fractions of the jamming packing fraction φJ = 0.452
and (b) the corresponding structure factors S(k) as a function of the
scaled wave number kD/2π in d = 4 with N = 10 000.

that hyperuniformity cannot be ensured for packings away
from strict jamming, which is more problematic as N in-
creases.

V. GENERATION AND CHARACTERIZATION OF 4D
AND 5D MRJ HYPERSPHERE PACKINGS

Having established that ensuring strict jamming results in
hyperuniform 3D MRJ sphere packings with α = 0.973 ±
0.02, we turn our attention to 4D and 5D hyperspheres to
characterize the hyperuniformity of their strictly jammed MRJ
states. In the following subsections, we provide evidence
suggesting it is more important to achieve strict jamming to
ensure hyperuniformity in 4D and 5D hypersphere packings
than in 3D sphere packings. To do so, we generate 4D and
5D MRJ hypersphere packings and conduct the same two
numerical experiments carried out on the 3D packings. We
then examine the trends in hyperuniformity scaling exponent
α and S(k) for packings of 3D, 4D, and 5D (hyper)spheres.

A. Relationships between hyperuniformity, jamming,
and system size are consistent with 3D packings

Here, we demonstrate that achieving strict jamming in
packings of 4D hyperspheres ensures hyperuniformity. Fig-
ure 3 demonstrates that the behaviors of Nb(x) and S(k) as φ

approaches φJ for 4D hyperspheres are consistent with those
of 3D spheres. By comparing the curves in Figs. 1(a) and 3(a),
it is clear that the backbone degrades much more quickly as φ

decreases in 4D packings than in 3D packings. This is accom-
panied by a significantly larger increase in the smallest-k value
of S(k), indicating a stronger increase of nonhyperuniform
character [cf. Figs. 1(b) and 3(b)]. From this, we conclude that
ensuring high-quality strict jamming becomes more important
as d increases when considering the hyperuniformity of MRJ
hypersphere packings. Figure 4(a) indicates that the largest 4D
packing that reliably reaches strict jamming is N = 10 000.
Like the 3D packings, above this system size the integrity of
the backbone decreases, which is accompanied by an increase
in the magnitude of the small-k regime of S(k) [see Fig. 4(b)].
This further supports the notion that larger packings appear
less hyperuniform because they cannot be jammed to the same
quality as the smaller packings. In a similar fashion, the largest
5D packing that reliably reaches strict jamming is determined
to be N = 20 000.

(a) (b)

FIG. 4. The number of backbone sphere Nb(x) scaled by the
number of spheres as a function of the scaled interparticle gap
r/D − 1, where D is the particle diameter and (b) the correspond-
ing structure factors S(k) as a function of the scaled wave number
kD/2π in d = 4 for packings with N = 5000 (φJ = 0.452), N =
10 000 (φJ = 0.452), N = 20 000 (φJ = 0.453), and N = 25 000
(φJ = 0.453). (b) has a dashed cyan line indicating α = 1.95 scaling.

B. Structure factors and hyperuniformity scaling exponents

We now compare S(k), for the largest-N ensembles, strictly
jammed packings of 3D, 4D, and 5D (hyper)spheres. Com-
pared to those given by Skoge et al. [42], we find the principal
peak heights in our S(k) are somewhat smaller. We attribute
this greater local disorder to the TJ step of the hybrid scheme
finding the inherent structure via a steepest-descent trajectory
[56] as opposed to a pure LS scheme that allows for dynamical
equilibration of the particles and can result in the formation
of crystalline domains [55]. The increased disorder of the
hybrid scheme is crucial when trying to produce MRJ-like
states. The attenuation and broadening of the peaks in S(k)
in Fig. 5(a) as d increases is consistent with the decorrelation
principle, which states that unconstrained spatial correlations
vanish asymptotically for pair distances beyond the particle
diameter in the high-dimensional limit and any higher-order
correlation functions gn(r1, . . . , rn) may be expressed up to
small errors in terms of the number density ρ and the pair
correlation function g2(r) [62]. This implies that as d →
∞, g2 for an MRJ packing would comprise a radial Dirac
delta function at contact δ(r = D) and a Heaviside step func-
tion for all pair distances greater than D �(r − D) [62].
Decorrelation is already exhibited in relatively low dimen-
sions, as can be clearly seen in pair correlation functions
shown in Fig. 5(c), which is consistent with those reported
in Ref. [42].

Figure 5(b) shows that α increases roughly by 1 when d
increases by 1 (see Table I). To reiterate, these packings do
not represent the ideal MRJ state because they contain rattlers
and thus are less hyperuniform than we expect the ideal MRJ
state to be [36,49]. These results suggest that for the ideal MRJ
state, α may scale as α = d − 2 ∀ d � 3. Based on Eq. (13),
this also indicates that MRJ packings are class-II hyperuni-
form for d = 3, and class-I hyperuniform for all d � 4 [1].
Note that this implies that in the infinite-dimensional limit,
MRJ packings become stealthy-like [84], i.e., that structure
factor becomes perfectly flat and equal to zero in the vicinity
of the origin. Moreover, Fig. 5(a) clearly shows the stealthy-
like flattening of S(k) near the origin begins at larger wave
numbers as dimension increases.

For d = 3, α = 1 indicates S(k) is nonanalytic at the
origin, implying a power-law large-r asymptotic behavior
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(a) (b) (c)

FIG. 5. Ensemble-averaged structure factors S(k) of the MRJ sphere packings in d = 3, 4, 5 (with N = 5000 (φJ = 0.639), 10 000 (φJ =
0.452), 20 000 (φJ = 0.309), respectively) as a function of the scaled wave number kD/2π , where D is the particle diameter, on a linear (a) and
log-log (b) scale. The black, red, and green dashed lines in (b) show hyperuniformity scaling exponents α = 0.97, 1.95, 2.8 respectively. The
associated pair correlations g2(r) are shown in (c), where the inset shows the log scale plot of |h(r)| (i.e., |g2(r) − 1|).

in the pair-correlation function, i.e., |h(r)| = |g2(r) − 1| ∼
1/r4. An analytic S(k) possesses only even powers of k and
arises whenever g2(r) decays exponentially fast or faster [2].
While our results suggest α = 2 for d = 4 and might imply
analytic behavior, it would be inconsistent to find nonana-
lytic behavior for d = 3 and not for d = 4. Nonanalyticity
for d = 4 with α = 2 would require higher odd powers in k
in the small-k expansion of S(k). Indeed, we find by care-
fully fitting the data that S(k) ∼ c2k2 + c3k3 at the origin
with c3/c2 ≈ 1/20, which indicates S(k) is nonanalytic at
the origin. Moreover, nonanalytic behavior is consistent with
observed power-law decay of g2(r) [see Fig. 5(c)]. The non-
analyticity of S(k) for d = 5, which has α = 3, also leads to
observed power-law decay in the corresponding pair correla-
tions, i.e., |h(r)| ∼ 1/r6.

Additionally, we find that the rattler fraction φR in the
numerically generated MRJ configurations decreases rapidly
as d increases (cf. Table I), consistent with previous findings
[42,52,56], and expect it to vanish for sufficiently large d . The
decrease of φR is associated with an exponentially increasing
kissing number (i.e., the number of spheres that can touch a
central sphere without overlapping) and implies the packings
become more uniform locally as d increases, which collec-
tively leads to an improved degree of hyperuniformity on the
global scale.

TABLE I. The rattler fractions φR and hyperuniformity scaling
exponents α extracted from the structure factors of the 3D, 4D, and
5D MRJ (hyper)sphere packings using the long-time scaling of the
excess spreadability. These values agree with the direct-fit values
within error. The uncertainty in these α measurements is the standard
deviation of the α values extracted from the excess spreadabilities for
each packing individually.

d N φR α

3 5000 1.6% 0.973±0.020
4 10000 0.96% 1.946±0.013
5 20000 0.57% 2.926±0.012

VI. DISCUSSION

We used a hybrid LS-to-TJ scheme to generate large
strictly jammed MRJ packings of identical hyperspheres in
dimensions three through five. We conducted two differ-
ent numerical experiments on these packings. First, for a
fixed number of spheres N , we tracked how the quality
of the jammed backbone and small-k behavior of S(k) be-
haved as the strict jamming point was approached. Then,
we examined how these same two structural descriptors var-
ied as N increased. In each spatial dimension, we found
that as the strict jamming point was approached, the qual-
ity of the backbone increased sharply with a concomitant
decrease in the magnitude of the small-k region of S(k),
signaling an increase in the degree of hyperuniformity of
the packings. Moreover, as N increased, the quality of the
backbone decreased while the magnitude of the small-k
region of S(k) increased, indicating the onset of nonhype-
runiformity due to strict jamming becoming more difficult
to achieve. These results vividly demonstrated that achieving
strict jamming is critical to ensuring hyperuniformity and
extracting the precise value of the hyperuniformity scaling
exponent α.

We extracted α from the largest strictly jammed packings
we produced by fitting the long-time behavior of the ex-
cess spreadability [59] and found α = 0.973 ± 0.20, 1.946 ±
0.13, 2.926 ± 0.12 in d = 3, 4, 5, respectively. In addition,
we found that φR decreased substantially as d increased, im-
plying that the ideal MRJ state is easier to approach as d
increases. Note that this value of α in d = 3 is markedly
larger than the value reported by Wilken et al. in Ref. [32]
(α = 0.25) for Manna-class RCP BRO packings and from the
LS-based packings produced by Donev et al. [37] (α ≈ 0.46,
see Fig. 6). Moreover, the larger positive values of α for the 4D
and 5D MRJ packings, indicating stronger hyperuniformity,
are diametrically opposite to the nonhyperuniformity (α = 0)
of the 4D and 5D Manna-class RCP BRO packings reported
by Wilken et al. in Ref. [33]. These stark differences in α

in dimension d = 3, 4, and 5 vividly illustrate the distinc-
tions between MRJ and RCP states, which was previously
shown for the corresponding 2D states [52]. In the latter
case, Ref. [52] suggested the existence of 2D monodisperse
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(a) (b)

(c) (d)

FIG. 6. Schematic figure adapted from Refs. [28,52] depicting
order maps represented in the φ − ψ plane for (a) 2D, (b) 3D,
(c) 4D, and (d) 5D strictly jammed, frictionless, monodisperse hard-
hypersphere packings. The cyan (a), black gradient (b), red (c), and
green (d) regions depict the space of strictly jammed packings, where
the MRJ point, representing the maximally random jammed state,
can be seen at the bottom of each of these regions. The white regions
correspond to unjammed packings and the gray region corresponds
to no packings. In (a), the locus of points A–A’ corresponds to the
lowest-density jammed packings, conjectured to be the reinforced
kagomé lattice, reinforced rectangular kagomé lattice, and other
combinations all with φmin = 0.6801... [68], point B corresponds
to the triangular lattice with φmax = 0.9068..., and the MRJ state
has φMRJ = 0.82. In (b), the locus of points A–A’ corresponds to
the lowest-density jammed packings, conjectured to be tunneled
crystals with φmin = 0.4936... [85], the locus of points B–B’ corre-
sponds to the fcc sphere packing and its stacking variants all with
φmax = 0.7404..., and the MRJ state has φMRJ = 0.639. In (c), A
corresponds to the presently unknown lowest-density jammed state,
B corresponds to the checkerboard-lattice packing D4 with φmax =
0.6168... (densest-known packing for d = 4) [86], and the MRJ state
has φMRJ = 0.452. In (d), A corresponds to the presently unknown
lowest-density jammed state, B corresponds to the checkerboard-
lattice packing D5 with φmax = 0.4652... (densest-known packing for
d = 5) [86], and the MRJ state has φMRJ = 0.309.

isostatic MRJ states with packing fraction φ ≈ 0.83, which is
appreciably less than that of hyperstatic RCP packings, which
are identified as the most probable packings or endpoints of
certain dynamical algorithms [32], a physically meaningful
definition of RCP [69].

Importantly, MRJ states are defined by a geometric-
structure approach, which emphasizes the analysis of individ-
ual packings, regardless of the probability of their appearance
[22,28,68]. Among jammed configurations, the MRJ state
is the most disordered configuration (in the infinite-volume
limit), as measured by a set of sensitive scalar order met-
rics subject to a particular jamming category, which in this
case is strict jamming and hence isostatic [22,28,68]. The
geometric-structure analysis leads to an order map for strictly
jammed states, schematically shown in Fig. 6 for dimensions
two through five, in which the MRJ states are the minima. A
sensitive order metric ψ has the following general properties:

FIG. 7. Structure factor S(k) for a N = 106 sphere packing as a
function of the scaled wave number kD/2π , where D is the particle
diameter, reproduced from Ref. [37] (blue squares). The solid black
line is a fit to the small-k region (k � 0.1) with a power-law scaling
of α = 0.46.

(1) it is a well-defined scalar function of a particle config-
uration R; (2) it is subject to the normalization 0 � ψ � 1,
where ψ = 0 and ψ = 1 represent the most disordered and
ordered possible structures; and (3) for any two configurations
RA and RB, ψ (RA) < ψ (RB) implies RA is more disordered
than RB (see Refs. [28,68] for specific examples of sensitive
order metrics and additional details). Thus, the MRJ state
is clearly distinguished from RCP states, which have been
defined as either the most probable jammed configurations
within an ensemble [69] or the endpoint of certain dynamical
algorithms [32].

As noted earlier, free-volume theory arguments [49]
strongly indicate that the ideal hyperuniform MRJ state is
rattler-free, and thus rattlers act as defects in putuative MRJ
packings. We surmise that the presence of a small con-
centration of rattlers results in a decrease in α. Thus, our
numerical results suggest the scaling relation α = d − 2. The
results in Ref. [30] present numerical evidence suggesting
α = 1 for binary MRJ disk packings. If one assumes that the
MRJ monodisperse disk packings numerically generated in
Ref. [52] are in the same universality class, then one would
conclude that α = 1 in d = 2 and d = 3. Thus, the scaling
argument presented here is only applicable for d � 3, im-
plying that ideal 3D MRJ sphere packings are hyperuniform
of class II and 4D and 5D hypersphere packings are class-
I hyperuniform. Moreover, the exponent α = d − 2 implies
that in the infinite-dimensional limit, MRJ packings become
stealthy-like [84]. These findings motivate the future develop-
ment of an algorithm that produces rattler-free 3D packings of
identical particles to approach the ideal MRJ state.
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APPENDIX A: HYPERUNIFORMITY OF THE N = 106

PACKINGS FROM REF. [37]

Here, we reproduce the direct Fourier transform data used
to produce the blue squares in the top-left inset of Fig. 2
in Ref. [37]. The packings therein are produced using an
event-driven molecular dynamics algorithm, which is known
to struggle to produce isostatic packings with N � 1000 [51].
Thus, these packings with N = 106 spheres are not jammed.
In Ref. [37], the authors fit S(k) on a linear scale and con-
clude that α = 1 for these packings. In Fig. 7, we fit these
data on a logarithmic scale and find that α = 0.46, which is
substantially lower than the previously reported value of 1.
The smaller α value observed for these packings is consistent
with a 3D sphere packing that is away from jamming.

APPENDIX B: SYSTEM SIZE STUDY OF 5D
HYPERSPHERES

Figure 8(a) shows the number of backbone spheres as
a function of of the interparticle distance for the puta-
tively jammed packings of 5D hyperspheres with N =
10 000, 20 000, 50 000. Both the N = 10 000 packings and
N = 20 000 packings have backbones of similar quality, while
there is a distinct drop-off in the the backbone quality of the
N = 50 000 packings. This is mirrored in Fig. 8(b) where the
structure factor for the N = 50 000 packings shows the onset
of nonhyperuniform scaling, while the N = 10 000 and 20 000
packings clearly indicate hyperuniform scaling. We choose

(a)

(b)

FIG. 8. The number of backbone spheres Nb(x) scaled by the
number of spheres as a function of the scaled interparticle gap
r/D − 1, where D is the particle diameter and (b) the corresponding
structure factors S(k) as a function of the scaled wave number kD/2π

in d = 5 for packings with N = 10 000, 20 000, 50 000. (b) has a
dashed cyan line indicating α = 2.92 scaling.

to examine the N = 20 000 packings here since they are the
largest packings we were able to generate in d = 5 with a
well-defined jammed backbone.
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