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Self-organized disordered vegetation patterns with hidden
order in arid ecosystems
Salvatore Torquatoa,b,c,d,1

Fig. 1. Schematics indicating circular sampling windows in two dimensions for three different images of scalar fields: a garden-variety disordered
nonhyperuniform (Left), disordered hyperuniform (Middle), periodic (Right) patterns, as adapted from ref. 15. In each of these examples, the intensities of the
fields within a window will fluctuate as the window position varies, which specifies the local field variance �2(R). In the case of the disordered nonhyperuniform
configuration, the variance �2(R) decays to zero like 1/R2. By contrast, the disordered hyperuniform pattern, shown in the Middle, has a variance �2(R) that
decays to zero like 1/R3, which remarkably has the same decay rate as the periodic pattern, shown on the Right; and hence, both are hyperuniform of class I.
The reader is referred to refs. 15 and 18 for details.

Understanding the formation mechanisms that lead to
spatial patterns found in nature has intrigued scientists for
centuries. Examples include leopard spots, zebra stripes,
convection-cell motifs, honeycombs, sunflower-seed spirals,
tessellations of cracks, and veins in a leaf, to mention
only a few. In a seminal 1952 paper entitled “The Chem-
ical Basis of Morphogenesis,” Alan Turing introduced a
theory to describe how highly symmetric spatial patterns
in nature arise spontaneously via simple diffusion–reaction
equations (1). He demonstrated that diffusion in an initially
homogeneous chemical system can lead to instabilities
that result in a variety of ordered spatial patterns with
certain selected wavelengths. This work demonstrated how
ordered patterns can arise out of “randomness” during mor-
phogenesis. In the last 70 y, Turing-like reaction–diffusion
equations and their generalizations have been employed to
understand pattern formation in a variety of natural and
synthetic systems (2–5). In a recent article in the PNAS (6),
Zhengpen Ge explored unusual disordered Turing patterns
in arid and semi-arid vegetation ecosystems with an exotic
hidden order on large scales that has come to be known as
“disordered hyperuniformity” (see Fig. 1).

Large-scale regular vegetation patterns are common
in nature and play a critical role in the ecological func-
tioning of arid and semi-arid ecosystems. The formation
of these patterns has been explicated via solutions to
a variety of different mathematical models that account
for the mechanisms of plant–water interactions (7–13).
Some of these models incorporate the activator–inhibitor
principle that Turing first proposed in 1952 (1), which is

also known as the scale-dependent feedback principle in
ecology (8, 12). However, the identification of all of the
key mechanisms underlying the origin and maintenance of
vegetation patterns continues to be debated. For example,
it has been suggested that regularity in vegetation patterns
induced by interactions with animal populations is another
critical mechanism that must be understood, stressing
the need to integrate multiple mechanisms of ecological
self-organization (13).

Notably, previous investigations of the spatial self-
organization of vegetation patterns have primarily focused
on features at short length scales, such as patch size and
shape, rather than features spanning across large length
scales. Drawing inspiration from the nascent field of hyper-
uniformity, Ge found that the disordered arid and semi-arid
vegetation Turing patterns evolve toward the unusual
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long-range property of hyperuniformity (14, 15), which he
argues is linked to optimal water usage.

But, what is hyperuniformity? The study of hyperuniform
states of matter is an emerging multidisciplinary field,
impinging on developments in the physical sciences, math-
ematics, and biology (14, 15). The hyperuniformity construct
was first introduced in the context of many-particle systems
(e.g., atoms/molecules that comprise a liquid or solid, stars
in a galaxy, or trees in a forest). Hyperuniform many-particle
systems are characterized by an anomalous suppression of
large-scale density fluctuations compared to those found
in garden-variety disordered systems, such as ordinary
fluids and amorphous solids. Hyperuniformity generalizes
our established notion of long-range order to include not
only all perfect crystals, perfect quasicrystals, but exotic
disordered systems as well. While disordered hyperuniform
systems were largely unknown in the scientific community
two decades ago, there is now a realization that such
systems arise in a host of contexts across the physical,
mathematical, and biological sciences, including classical
equilibrium liquids and ground states, classical nonequilib-
rium systems, quantum systems, sphere packings, random
matrices, dynamical systems and quantum chaos, number
theory, large-scale structure of the universe, biological and
ecological systems, and novel materials (15, 16).

The hyperuniformity concept was subsequently general-
ized to characterize heterogeneous media (17) and random
scalar fields (18). Scalar fields can arise in a variety of physical
contexts, including concentration and temperature fields
in porous media, turbulent flows, laser speckle patterns,
and temperature fluctuations associated with the cosmic
microwave background (15). Other examples include spatial
patterns that arise in biological and chemical systems,
including Turing patterns, which is the subject of the PNAS
article.

How is hyperuniformity quantified for random scalar
fields? Such patterns are characterized by a spectral
density 	 (k) (a nonnegative quantity) that tends to zero
as the wavenumber |k| tends to zero (18), where k is
the wavevector. The spectral density encodes information
about characteristic spatial frequencies (wavenumbers) of
the random scalar fields or, more precisely, the square
of the Fourier transform of “images” of the fields. By
contrast, garden-variety random scalar fields possess a
spectral density 	 (k) that does not vanish at the origin, i.e.,
	 (k = 0) > 0. Another way to ascertain hyperuniformity is
to randomly place many large spherical sampling windows
of radius R in the system and measure the integrated field
intensities within the window. The fields within the randomly
placed windows will fluctuate, enabling one to find the
corresponding local variance associated with fluctuations in

the field �2(R), as shown in Fig. 1. Run-of-the-mill disordered
patterns are characterized by a local variance �2(R) that
decays to zero like 1/Rd for large R, where d is the space
dimension; see the left panel of Fig. 1. A hyperuniform
pattern has a variance that decays to zero faster than 1/Rd
(15, 18). For example, all perfect periodic patterns have
a variance that decays like 1/Rd+1. Remarkably, there are
disordered patterns (seeMiddle panel of Fig. 1) that have the
same decay rate as periodic ones (see Right panel of Fig. 1)
and hence are hyperuniform. This type of long-range order
in a disordered hyperuniform pattern is said to possess
hidden order (15) because it is often difficult to detect by eye.
Patterns in which �2(R) decays like 1/Rd+1 are the strongest
form of hyperuniformity and are called class I (15, 18). Fig. 1
contrasts a typical disordered nonhyperuniform pattern
with two different class I hyperuniform patterns in two
dimensions, one that is disordered and the other that
is ordered. Class II systems are an intermediate form of
hyperuniformity in which �2(R) decays like ln(R)/Rd+1. The
weakest form of hyperuniformity is class III in which �2(R)
decays like 1/Rd+� , where 0 < � < 1.

Returning to the PNAS article, Ge studied four dif-
ferent Turing reaction–diffusion equations to model the
spatial evolution of two-dimensional (d = 2) vegetation
patterns over time and analyze their large-scale structural

Zhengpen Ge explored unusual disordered Turing
patterns in arid and semi-arid vegetation ecosystems
with an exotic hidden order on large scales that has
come to be known as disordered hyperuniformity.

characteristics. To quantify the latter, he
utilized the aforementioned theoretical
tools to calculate the degree of hyperuni-
formity as measured by the exponent � in
the decay of the local field variance �2(R) ∼
1/R� for large R. (Note that Ge uses the
notation blr for this exponent.) At steady-
state conditions, he showed that the mean
biomass (initially spatially uncorrelated and

hence nonhyperuniform) linearly decreases with rainfall
and spatial patterns of “gaps,” “labyrinths,” and “spots” se-
quentially emerge. The gap and labyrinth patterns become
hyperuniform of class III (2 < � < 3) and in the steady-
state, the exponent � approaches the upper hyperuniform
limit of 3 (class I hyperuniformity) with decreasing rainfall.
When spots emerge, the exponent � becomes greater than
2 (class III) and always converges to the upper hyperuniform
limit 3 (class I) with decreasing rainfall until a tipping point
(rainfall threshold amount that separates desert states
from recoverable states) is reached. Interestingly, the time
taken for � to reach the value 3 increases exponentially
with decreasing rainfall. As the ecosystem approaches the
tipping point, the temporal changes in mean biomass
show that decreasing rainfall causes the vegetation pattern
to remain in a nonhyperuniform state, that is, � ≤ 2,
resulting in low biomass for an extended period of time.
After the ecosystem evolves to achieve hyperuniformity
(i.e., � > 2), biomass rapidly increases. Importantly, Ge
observes that the time-evolution of the exponent � to-
ward a hyperuniform state is accompanied by the spatial
optimization of water acquisition by vegetation. Therefore,
decreasing rainfall reduces the mean biomass in steady
states and significantly slows down the spatial optimization
of water-use efficiency by vegetation in long-time transient
regimes.

2 of 3 https://doi.org/10.1073/pnas.2316879120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 P
R

IN
C

E
T

O
N

 U
N

IV
 L

IB
R

A
R

Y
 A

C
Q

U
IS

IT
IO

N
 S

E
R

V
IC

E
 P

E
R

IO
D

IC
A

L
S 

on
 N

ov
em

be
r 

27
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

14
0.

18
0.

24
0.

78
.



In order to examine the effect of spatial patterns on
resilience, Ge carried out numerical disturbance experi-
ments on the models considered. He fixed the amount of
rainfall and focused on how resilience responds to two
kinds of disturbances: 1) the resilience of the transient
patterns in response to homogeneous disturbances; and
2) the resilience of the steady-state pattern (� = 3) in
response to both homogeneous and heterogeneous distur-
bances. A key finding is that the spatial resilience of Turing-
type ecosystems after intense, short-term heterogeneous
disturbances in hyperuniform states with � = 3 (which
destroy hyperuniformity) leads to longer recovery times
in the biomass to a pre-disturbance hyperuniform state
with � = 3, in contrast to spatially homogeneous distur-
bances that maintain hyperuniformity. Therefore, Ge has
proposed that the degree of hyperuniformity, as measured
by the exponent �, could be used in future work as a
metric for assessing spatial resilience after intense short-
term disturbances in the spatial evolution of vegetation
patterns.

As mentioned above, Ge has shown a possible con-
comitant link between hyperuniform states and the spatial
optimization of water-use efficiency by vegetation. It is note-
worthy that disordered hyperuniformity can confer optimal
or nearly optimal functionality (under certain constraints)
in two other biological contexts: photoreceptor mosaics in
the avian retina (19) and the immune system (20). It is
likely there are many other disordered hyperuniform spatial
patterns in nature that are waiting to be discovered by
diagnosing them under the hyperuniformity “lens.” If so,
what are the possible hyperuniformity classes and how
are they linked to the mechanisms leading to the spatial
patterns? Does hyperuniformity in such instances always
signify an underlying constrained optimization process due
to the singular nature of such an exotic disordered state?
The exploration of answers to these exciting open questions
are fruitful avenues for future research.
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