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Disordered stealthy hyperuniform dielectric composites exhibit novel electromagnetic wave transport properties in
two and three dimensions. Here, we carry out the first study of the electromagnetic properties of one-dimensional 1D)
disordered stealthy hyperuniform layered media. From an exact nonlocal theory, we derive an approximation formula
for the effective dynamic dielectric constant tensor εe(kq, ω) of general 1D media that is valid well beyond the qua-
sistatic regime and apply it to 1D stealthy hyperuniform systems. We consider incident waves of transverse polarization,
frequency ω, and wavenumber kq . Our formula for εe(kq, ω), which is given in terms of the spectral density, leads
to a closed-form relation for the transmittance T . Our theoretical predictions are in excellent agreement with finite-
difference time-domain (FDTD) simulations. Stealthy hyperuniform layered media have perfect transparency intervals
up to a finite wavenumber, implying no Anderson localization, but non-stealthy hyperuniform media are not perfectly
transparent. Our predictive theory provides a new path for the inverse design of the wave characteristics of disordered
layered media, which are readily fabricated, by engineering their spectral densities. © 2023 Optica Publishing Group under

the terms of theOpticaOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.489797

1. INTRODUCTION

Disordered hyperuniform many-body systems [1–3] are an emerg-
ing class of amorphous states of matter that are endowed with
novel wave and other transport properties with advantages over
their periodic counterparts [3–23]. Such hyperuniform two-phase
composites are characterized by an anomalous suppression of
volume-fraction fluctuations in the infinite-wavelength limit
[2,3], i.e., the local volume-fraction variance σ 2

V (R) inside a
spherical observation window of radius R decays faster than R−d

in d dimensions in the large-R limit, limR→∞ Rdσ 2
V (R)= 0.

Equivalently, its associated spectral density χ̃V (k) vanishes as the
wavenumber |k| tends to zero, i.e., lim|k|→0 χ̃V (k)= 0. One
important class of such hyperuniform media is the disordered
stealthy varieties in which χ̃V (k)= 0 for 0< |k|< K [24–27],
meaning that they completely suppress single scattering of incident
radiation for these wave vectors [3,25]. The degree of stealthiness
χ is the ratio of the number of the constrained wave vectors in
the reciprocal space to the total number of degrees of freedom.
Recent studies showed that such exotic disordered media exhibit
novel electromagnetic wave transport properties, including high
transparency in the optically dense regime, maximized absorption,
and complete photonic bandgap formation [4,5,7,8,10,12–17,
20–23,28–30] in two and three spatial dimensions. For example,

previous work on light transparency of stealthy hyperuniform
systems considered two-dimensional (2D) point scatterers [7] and
2D and three-dimensional (3D) two-phase dielectric composites
[10,31]. Here, we undertake the first study of the electromag-
netic properties of one-dimensional (1D) disordered stealthy
hyperuniform layered media.

The problem of wave propagation in a two-phase (or multi-
phase) layered medium has been extensively studied because of
its simplicity and its ease of fabrication [32,33], including surface
plasmons [34,35], Anderson localization [36–41], and deep-
subwavelength disorder [42], as well as practical applications
[18,43–45]. An important wave characteristic is the effective
dynamic dielectric constant tensor εe (kq , ω) for the incident
radiation of frequency ω and wave vector kq . This complex-
valued quantity determines the effective wavenumber ke and
extinction mean free path `e . While there have been many theoreti-
cal/numerical treatments to estimate εe (kq , ω) of layered media
[46–53], previous approximations are applicable to disordered
media in the quasistatic or long-wavelength regime, i.e., |kq |ξ � 1,
where ξ is a characteristic inhomogeneity length scale.

Torquato and Kim [31] recently derived the general nonlocal
strong-contrast expansion for the effective dielectric constant
tensor εe(kq , ω) that can be applied to two-phase media with
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Fig. 1. Schematic of three-dimensional disordered anisotropic strati-
fied media consisting of infinite parallel slabs of phases 1 (cyan) and 2
(dark blue). A plane electromagnetic wave of transverse polarization is
normally incident into the medium, and its wave vector is shown as a red
arrow.

various symmetries. This expansion exactly treats multiple
scattering to all orders beyond the quasistatic regime (i.e.,
0≤ |kq |ξ . 1) as a series involving functionals of the n-point
correlation functions S(i)(x1, . . . , xn) for all n (Section 2). Here,
the quantity S(i)(x1, . . . , xn) gives the probability of finding n
points at positions x1, . . . , xn all in phase i (= 1, 2). Because of
the fast-convergence property of this series (or the linear frac-
tional form of this series), truncating it at the n-point level yields
multiple-scattering approximations that still accurately capture
multiple scattering to all orders for a wide class of microstruc-
tures, including statistically anisotropic media. The second-order
truncations already provide accurate approximations for 2D and
3D statistically isotropic two-phase media [31]. However, and
importantly, analogous approximations for statistically anisotropic
media have yet to be extracted and applied.

Here, we theoretically and numerically investigate the tensor
εe (kq , ω) of 3D anisotropic layered media consisting of infinite
parallel dielectric slabs of phases 1 and 2 whose thicknesses are
derived from 1D disordered stealthy hyperuniform packings at
various χ values. For simplicity, we focus on normally incident
waves of transverse polarization, where kq = kq ẑ (see Fig. 1); thus,
the wavenumber kq is the independent variable of the effective
dielectric constant. From the exact strong-contrast expansion, we
derive, for the first time, formulas for εe (kq , ω) for 3D anisotropic
layered media that accurately account for multiple scattering
in terms of the spectral density χ̃V (k), enabling us to probe a
wide range of wavenumbers. The quantity χ̃V (k) is the Fourier
transform of the autocovariance function χV (r)≡ S(i)2 (r)− φi

2

[54], where r≡ x2 − x1, and it can be measured from scattering
experiments [55]. To our knowledge, this expression is the first
closed-form formula of εe (kq , ω) for general 1D media that
applies well beyond the quasistatic regime.

We numerically verify that our derived formula can accurately
capture multiple scattering effects due to correlated disorder
beyond the quasistatic regime by using finite-difference time-
domain (FDTD) simulations. For this purpose, we numerically
generate stealthy hyperuniform stratified dielectric two-phase
media via a modified collective-coordinate procedure described
in [16,31] (Section 3). For dimensionless wavenumbers up to
k1/ρ . 1.5, our predictions indeed show excellent agreement
with the real and imaginary parts of the effective dielectric con-
stant as well as transmittance found from FDTD simulations
(Sections 4 and 5 of Supplement 1). Notably, our formula predicts
that stealthy hyperuniform layered media are perfectly transpar-
ent (defined as Im[εe (kq , ω)] = 0) up to a finite wavenumber

K T = K /(2
√
φ1ε1 + φ2ε2) (i.e., no Anderson localization) in

the infinite-volume limit; see Eq. (12). This result is especially
remarkable because extended states in 1D disordered systems are
more difficult to achieve than in higher dimensions [17,38–41].

We also show that a perfect transparency interval cannot exist
in disordered 1D non-stealthy media, hyperuniform or not, and
thus Anderson localization can be present at all wavenumbers. Our
results, combined with the methods to generate media with a pre-
scribed spectral density [13,24–26], provide a new inverse-design
approach [56] to engineer and fabricate multilayered dielectric
media with novel wave properties.

2. THEORY

A. Exact Strong-Contrast Expansion

Here, we briefly summarize the general nonlocal strong-contrast-
expansion formalism of the effective dynamic dielectric constant
tensor εe (kq , ω) for 3D two-phase media with arbitrary sym-
metries [31]. (The strong-property-fluctuation theory [57,58]
corresponds to a special case of our strong-contrast formalism, as
detailed in Section 1 of Supplement 1.) We consider a macroscop-
ically large two-phase composite specimen in three dimensions
embedded inside an infinitely large reference phase q [31,59]. For
simplicity, we take the phase q to be the matrix phase (i.e., q =
1, 2) and assume that phase 1 and 2 are nonmagnetic and dielec-
trically isotropic with real-valued and frequency-independent
dielectric constants. These assumptions imply the linear dis-
persion relation in the reference phase [i.e., kq (ω)≡ |kq (ω)| =
√
εqω/c ], where c is the speed of light in vacuum; thus, we

henceforth do not explicitly indicate theω dependence.
The general nonlocal strong-contrast expansion is a series

expansion of the linear fractional form of the tensor εe (kq ),
given as

φp L (q)p ·

({
I + D(q)

·
[
εe (kq )− εq I

]}
·
[
εe (kq )− εq I

]−1
)
· φp L (q)p

= φp L (q)p −

∞∑
n=2

A(p)
n (kq ),

(1)

where p(6= q) indicates the polarized phase, L (q)p is the expansion
parameter defined as

L (q)p ≡ (εp − εq )
[
I + D(q)(εp − εq )

]−1
, (2)

and A(p)
n (kq ) is a wave-vector-dependent second-rank tensor

that is a functional involving the set of correlation functions
S(p)1 , S(p)2 , . . . , S(p)n and products of the principal part of the
dyadic Green’s function H (q)(r); see Section 1 of Supplement 1.
The series expansion [Eq. (1)] has four salient features. First,
Eq. (1) is derived from a spatially nonlocal averaged constitutive
relation [50,60,61], resulting in an expansion that is valid from
the long- to intermediate-wavelength regimes. Second, Eq. (1)
exactly treats multiple scattering to all orders at a given incident
wave vector kq when the nonlocal homogenization theory is valid
because the terms A(p)

n (kq ) for n = 2, . . . in Eq. (1) explicitly
account for complete microstructural information (the infinite set
of S2, S3, . . .) to infinite order [31]; see Section 1 of Supplement 1
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for details. Third, the choice of the shape of the infinitesimal exclu-
sion region (i.e., D(q)) leads to a different expansion parameter
L (q)p that determines the convergence properties. Thus, unlike
standard multiple-scattering theories [38,62,63], here one can
naturally “tune” the general series expansion to obtain distinctly
different approximations suited for certain classes of microstruc-
tures. Fourth, the left side of the series [Eq. (1)] is a linear fractional
transformation of εe (kq ) rather than εe (kq ) itself, which leads to
the rapid convergence of the strong-contrast expansions so that its
lower-order truncations approximate well higher-order functionals
(i.e., multiple scattering) of the exact series to all orders in terms of
lower-order diagrams [31].

B. Multiple-Scattering Approximations for Layered
Media

We can now extract from the exact strong-contrast expansion
[Eq. (1)] accurate multiple-scattering approximations for layered
media by truncating the expansion at the n-point level. We focus
here on such a formula at the two-point level that depends on
the spectral density χ̃V (k) because it is still accurate and easy to
compute. For simplicity, we restrict ourselves to normally incident
waves (Fig. 1); thus, the effective dielectric constant now depends
on the wavenumber kq . We outline the derivation here and provide
details in Section 2 of Supplement 1.

Since layered media have rotational symmetry about the z axis
and translational symmetry in the x−y plane, the spectral density
can be expressed as

χ̃V (k)= (2π)
2δ(kx )δ(ky )χ̃V (kz), (3)

where δ(k) is the 1D Dirac delta function, and χ̃V (kz) is the
spectral density of 1D two-phase media. For 1D packings
of identical hard rods of radius a and packing fraction φ2,
χ̃V (kz)= φ2[2 sin2(kza)]/(k2

z a)S(kz) [54,64], where S(kz)

is the structure factor of the rod centers. Due to these symmetries,
when applying the series [Eq. (1)] to layered media, we utilize the
feature 3 discussed in Section 2.A by choosing a disk-like exclusion
region normal to the z axis [31], leading to

D(q)
= ε−1

q ẑẑ, L (q)p = βpq[εp
(
I − ẑẑ

)
+ εq ẑẑ], (4)

where ẑ is a unit vector along the z direction and βpq is the
1D counterpart of the dielectric polarizability, defined as
βpq ≡ 1− εq/εp . Here, L (q)p is obtained by substituting D(q)

in Eq. (4) into Eq. (2). Using Eq. (4) and the assumption of normal
incidence, the general expression forA(p)

2 (kq ) simplifies as

A(p)
2 (kq )=

(
εpβpq

)2 F (1D)(kq )

εq
(I − ẑẑ), (5)

F (1D)(k)=
k2

π
p.v.

∫
∞

0
dqz

χ̃V (qz)

q 2
z − (2k)2

+
ik
4

[
χ̃V (0)+ χ̃V (2k)

]
,

(6)
where p.v. stands for the Cauchy principal value. Note that
F (1D)(kq ) is the nonlocal attenuation function for 1D two-phase
media, whose 2D and 3D counterparts were derived in [31].

Applying Eq. (4) and Eq. (5) into the second-order truncation
of the series [Eq. (1)] yields

(φpεpβpq)
2

εq (ε⊥e (kq )/εq − 1)
(I − ẑẑ)+

(φpεqβpq)
2

εq (1− εq/ε
z
e (kq ))

ẑẑ

= εpβpq[φp − (εpβpq)F (1D)(kq )/εq ](I − ẑẑ)+ φpεqβpq ẑẑ,
(7)

where we have decomposed the effective dielectric constant ten-
sor into two orthogonal components ε⊥e (kq ) and εz

e (kq ) for the
transverse and longitudinal polarizations, respectively, as follows:
εe (kq )= ε

⊥
e (kq )(I − ẑẑ)+ εz

e (kq )ẑẑ. Now Eq. (7) provides two
independent approximations:

ε⊥e (kq )= εq

[
1+

φ2
p(εp/εq )βpq

φp − (εpβpq)F (1D)(kq )/εq

]
, (8)

εz
e (kq )= εq (1− φpβpq)

−1. (9)

Note that ε⊥e (kq ) is dependent on the incident wavenumber kq

and is complex-valued if χ̃V (0)+ χ̃V (2kq ) > 0, implying that the
media can be lossy due to forward scattering and backscattering
from inhomogeneties in the local dielectric constant. By contrast,
εz

e (kq ) is independent of kq , reflecting the fact that a traveling
longitudinal wave cannot exist under our assumptions. Hence,
we focus on ε⊥e (kq ) in the rest of this work. In the static limit,
Eqs. (8) and (9) reduce to the arithmetic and harmonic means of
the dielectric constants, respectively,

ε⊥e (0)= 〈ε〉 ≡ φpεp + φqεq , εz
e (0)= (φp/εp + φq/εq )

−1.
(10)

Interestingly, these static results are exact for any microstruc-
ture [54]. Renormalization of the reference phase for the optimal
convergence (Section 2 of Supplement 1), equivalent to using the
effective Green’s function in [31], yields a scaled strong-contrast
approximation for disordered layered media,

ε⊥e (kq )= εq

[
1+

φ2
p(εp/εq )βpq

φp − (εpβpq)F (1D)
(
kq
√
〈ε〉/εq

)
/〈ε〉

]
,

(11)
where 〈ε〉 is given in Eq. (10). We henceforth focus on this scaled
approximation because it is more accurate than Eq. (8), as shown
Fig. S6 in Supplement 1. As shown in [31], Eq. (11) satisfies the
Kramers–Kronig relations [65] so that its predictions properly
exhibit both normal dispersion [i.e., an increase in Re[ε⊥e ] with
kq ] and anomalous dispersion [i.e., a decrease in Re[ε⊥e ] with kq ].
Furthermore, satisfying the Kramers–Kronig relations also implies
that Eq. (11) yields qualitatively accurate predictions, even beyond
the validity regime (i.e., kq/ρ . 1.5); see Sections 5 and 6 in
Supplement 1 for details.

In the scaled approximation [Eq. (11)], the quantity F (1D)(kq )

is generally complex-valued at a given incident wavenumber kq ,
producing a corresponding ε⊥e (kq ) with a nonnegative imaginary
part. Following conventional usage, a composite attenuates waves
at a given wavenumber if the imaginary part of the effective dielec-
tric constant is positive. Such attenuation occurs here only because
of multiple scattering effects (not absorption).

Importantly, our strong-contrast approximation [Eq. (11)]
predicts that stealthy hyperuniform layered media can be per-
fectly transparent (i.e., Im[ε⊥e ] = 0) in the infinite-volume limit
for a finite range of wavenumbers. Since any stealthy hyper-
uniform systems completely suppress both forward scattering
and backscattering [i.e., χ̃V (0)+ χ̃V (2k1)= 0] for k1 < K /2,
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Im[F (1D)(k1)] = 0, and substituting this condition into the scaled
formula [Eq. (11)] yields a perfect transparency interval,

0≤ k1 < K T ≡
K

2
√
〈ε〉
=
ρπχ
√
〈ε〉
, (12)

where 〈ε〉 is the arithmetic mean of the local dielectric constant;
see Eq. (10). Perfect transparency implies an infinite localization
length within this spectral range, which is consistent with an
estimate that the localization length is inversely proportional to
what we call the spectral density [40]. We stress that the predic-
tion [Eq. (12)] is purely theoretical and, hence, does not rely on
simulations or measurements of the spectral density.

3. MODEL MICROSTRUCTURES

Stealthy hyperuniform particle systems are defined by a spectral
density that vanishes in a finite range of wavenumbers that includes
the origin [χ̃V (k)= 0 for 0< |k| ≤ K ]. The degree of stealthiness
χ is measured by the ratio of the number of the constrained wave
vectors in the reciprocal space to the total degrees of freedom, i.e.,
in one dimension, χ = K /(2πρ), where ρ is the number density
of particles. For χ < 0.5 in two and three dimensions or χ < 1/3
in one dimension, these stealthy hyperuniform systems are highly
degenerate and disordered [26]. Thus, we consider 1D cases in
whichχ takes the following values:χ = 0.1, 0.2, 0.3. Henceforth,
we take the characteristic inhomogeneity length scale ξ to be the
mean particle separation 1/ρ, which is of the order of the mean
nearest-neighbor distance `P , (i.e., `P ∼ 1/ρ). This choice means
that the range of validity of our nonlocal theory is k1/ρ . 1.5 for
the current models, as shown later in Section 5.

We numerically generate 1D packings of packing fraction
φ2 = 0.2 in the following two-step procedure. First, we generate
point configurations of N particles in a periodic fundamental cellF
via the collective-coordinate optimization technique [24–26], which
numerically generates ground states with very high-precision of the
following potential energy:

8(rN)=
1

VF

∑
|k|<K

ṽ(k)S(k)+
∑
i< j

u(r ij), (13)

where ṽ(k)= 1 for |k|< K , VF is the volume ofF, and a soft-core
repulsion term [66] is

u(r )=
{
(1− r /σ)2, r <σ,
0, otherwise.

(14)

The soft repulsion [Eq. (14)] is to get the stealthy hyperuniform
ground states whose nearest-neighbor distances are larger than the
length scale σ [16,31]. Finally, we create packings with dielectric
constant ε2 by circumscribing the points by identical rods of radius
a <σ/2 without overlaps [8]; see Fig. 2(a). The parameters used to
generate these systems are listed in Section 3 of Supplement 1.

We compute the spectral density χ̃V (k) from the generated
packings as shown in Fig. 2(b). From the long- to intermediate-
wavelength regimes (k/ρ . 10), we clearly see that stealthy
hyperuniform packings exhibit a higher degree of correlations as χ
increases. In the small-wavelength regime (k/ρ� 10 or, equiva-
lently, ka � 1), however, the curves tend to collapse onto a single
curve, reflecting the fact that these three systems consist of identical
hard rods.

Fig. 2. Disordered stealthy hyperuniform layered media of pack-
ing fraction φ2 = 0.2 and unit number density ρ = 1 at three values of
χ = 0.1, 0.2, 0.3. (a) Representative images at χ = 0.1 (top), χ = 0.2
(middle), and χ = 0.3 (bottom). The particle phases are shown in dif-
ferent colors. (b) Spectral densities χ̃V (k) as functions of dimensionless
wavenumber k/ρ.

4. SIMULATIONS

We validate the accuracy of our predictions on the effective dielec-
tric constant ε⊥e (k1) and the transmittance T by comparing
primarily to full-waveform simulations [67] via an open-source
FDTD package MEEP [68], although we use the transfer matrix
method to compute T, as explained in Supplement 1. We take
the matrix to be the reference phase (i.e., q = 1) and the particles
to be the polarized phase (i.e., p = 2) and set the phase contrast
ratio as ε2/ε1 = 4. We measure the transmittance spectra T
through the disordered stealthy hyperuniform layered media,
which are then compared to the predictions from Eq. (11). We
also directly extract ε⊥e (k1) from the nonlocal constitutive relation
ε⊥e (k1)= 〈D̃(ke , ω)〉/〈Ẽ (ke , ω)〉 at a given frequency ω, as was
done in [31]; see Fig. S6 of Supplement 1. Here, 〈D̃(ke , ω)〉 and
〈Ẽ (ke , ω)〉 are the spatial Fourier transforms of the ensemble
averages of dielectric displacement field 〈D(x , ω)〉 and electric
field 〈E (x , ω)〉 at the complex-valued effective wavenumber ke ,
respectively; see details in Section 3 of Supplement 1.

5. RESULTS

We now show how our multiple-scattering approximation
[Eq. (11)] enables us to accurately predict the real and imagi-
nary parts of the effective dielectric constant tensor εe (k1) for
disordered stealthy hyperuniform layered media for χ = 0.1, 0.2,
and 0.3. We begin by computing the nonlocal attenuation func-
tion F (1D)(k) given in Eq. (6) from χ̃V (k); see Fig. 3. Stealthy
hyperuniform layered media can achieve Im[F (1D)(k)] = 0 up
to a finite wavenumber k, leading to the prediction of perfect
transparency interval; see Eq. (12).

Using the values of F (1D)(k) in Fig. 3, we then compute the
scaled approximation [Eq. (11)] for ε⊥e (k1); see Fig. 4. Both real
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Fig. 3. Real (upper) and imaginary (lower) parts of the nonlocal atten-
uation functions F (1D)(k) as functions of dimensionless wavenumber
k/ρ for 1D disordered stealthy hyperuniform layered media of packing
fraction φ2 = 0.2 at three values of χ = 0.1, 0.2, 0.3. The functions are
computed from the spectral densities in Fig. 2 and Eq. (6).

Fig. 4. Predictions of the scaled strong-contrast approximation
[Eq. (11)] of the effective dynamic dielectric constant ε⊥e (k1) as a func-
tion of the dimensionless incident wavenumber k1/ρ for disordered
stealthy hyperuniform layered media of φ2 = 0.2 and ε2/ε1 = 4 at
χ = 0.1, 0.2, 0.3. The lower panel is a semilog plot of the imaginary part
Im[ε⊥e (k1)]. For the effective dielectric constants, our theory is accurate
up to k1/ρ . 1.5; see Fig. S6 of Supplement 1.

and imaginary parts of these predictions show excellent agree-
ment with the results from FDTD simulations up to k1/ρ . 1.5
(see Fig. S6 of Supplement 1). In Fig. 4, the real part of our for-
mula increases with k1 (normal dispersion) within the perfect
transparency interval and then decreases with k1 (anomalous
dispersion) outside of those intervals. Such a spectral dependence
of Re[ε⊥e (k1)] comes from the fact that the strong-contrast for-
mula satisfies the Kramers–Kronig relations [65] (see Section 6
of Supplement 1), as does the corresponding approximation
for 3D statistically isotropic media [31]. Equation (11) also
shows qualitatively accurate dielectric responses even beyond the
intermediate-wavelength regime (i.e., k1/ρ & 1.5) because the
Kramers–Kronig relations closely relate the high-frequency pre-
dictions of Re[ε⊥e ] to the accurate predictions of Im[ε⊥e ] in a finite
spectral range and vice versa [69].

As shown in Fig. 4, these composites are perfectly transparent
(i.e., Im[ε⊥e ] = 0) for a wide range of frequencies, as predicted by
Eq. (12). At the edges of these transparency intervals, a discon-
tinuous change occurs in Im[ε⊥e ] with k1 because the imaginary
part is directly proportional to χ̃V (2k1); see Im[F (1D)(k)] given

Fig. 5. Prediction [Eq. (12)] of the upper bound K T of the perfect
transparency intervals of 1D stealthy hyperuniform layered media with
φ2 = 0.2 and ρ = 1 as a function of the phase contrast ratio ε2/ε1. We
consider threeχ values:χ = 0.1, 0.2, and 0.3.

in Eq. (6). In higher dimensions, however, such abrupt transitions
become increasingly more difficult to achieve, as observed in [31];
see Section 2 of Supplement 1 for detail. Figure 5 depicts how the
predicted perfect transparency interval from Eq. (12) varies with
the phase contrast ratio ε2/ε1 for given values of χ , φ2, and ρ. We
numerically demonstrate that these predicted intervals are valid for
1< ε2/ε1 < 10; see Fig. S3 of Supplement 1.

From our scaled approximation [Eq. (11)], we also predict
the normal transmittance T through a layered medium at k1 by
assuming that the system is a homogeneous slab of thickness L
with an effective dielectric constant ε⊥e (k1) and is optically thin so
that waves inside it can interfere coherently. To estimate T, we use
an Airy formula [46] of transmittance for a lossy homogeneous slab
with absorption:

T =

∣∣∣∣∣−
√
ε⊥e t2 exp(i

√
ε⊥e k1L)

1− r 2 exp(2i
√
ε⊥e k1L)

∣∣∣∣∣
2

, (15)

where r ≡ (1−
√
ε⊥e )/(1+

√
ε⊥e ) and t ≡ 2/(1+

√
ε⊥e ), and

ε⊥e is given by the approximation [Eq. (11)]; see Section 4 of
Supplement 1 for results from Eq. (8). The electric field inside
the dielectric layered media attenuates solely due to multiple scat-
tering, but its effective behavior is identical to an exponentially
damped wave due to absorption in a lossy homogeneous medium
(see Fig. S2 of Supplement 1). Hence, we expect Eq. (15) to provide
a good approximation of T.

We now compare our theoretical predictions for transmission to
the corresponding results obtained from FDTD simulations; see
Fig. 6. Remarkably, our theory very accurately predicts the perfect
transparency intervals [Eq. (12)], i.e., no Anderson localization
(green regions in Fig. 6), because they correctly incorporate multi-
ple scattering at finite wavelengths via the spectral density. This
observation is noteworthy because extended states in 1D disor-
dered systems are much more difficult to achieve than in higher
dimensions [17,38,39,41]. Within these transparency intervals
(k1 < K T ), our theory accurately predicts the small-amplitude
periodic oscillations in T around unity, which come from coher-
ent interference of the multiply reflected waves due to the finite
system thickness L and, thus, reduce to a constant close to unity
when L is much larger than the coherence length of light [46,70].
Outside of the perfect transparency intervals, where scattering
attenuation is strong, T from the Airy formula [Eq. (15)] provides
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Fig. 6. Transmittance spectra T as a function of the dimensionless
wavenumber k1/ρ for disordered stealthy hyperuniform layered media of
packing fraction φ2 (≡ 2ρa)= 0.2 and phase-contrast ratio ε2/ε1 = 4
at three values of (a) χ = 0.1, (b) χ = 0.2, and (c) χ = 0.3. The pre-
dictions are computed from Eq. (15) using the scaled approximation
[Eq. (11)]. The green-shaded area indicates the predicted transparency
intervals [Eq. (12)]. Within these intervals, our predictions show excellent
agreement with simulations, since there is no absorption.

a lower bound on the simulation results for the reason explained in
Section 4 of Supplement 1. However, we confirm that our theory
still accurately predicts, qualitatively, the spectral dependence of T
because Eq. (11) yields a physically feasible dielectric response due
to the Kramers–Kronig relations. Within these strong-attenuation
intervals, T is increasingly suppressed as L increases and becomes
virtually zero for sufficiently large L since Im[ε⊥e (k1)]> 0 if
k1 > K T . Stealthy hyperuniformity is required for disordered
layered media to possess perfect transparency for a finite range of
wavenumbers. Indeed, we show that such a perfect transparency
interval cannot exist for “non-stealthy” hyperuniform 1D media,
even though these correlated disordered systems anomalously
suppress large-scale volume-fraction fluctuations; see the example
in Section 7 of Supplement 1.

6. CONCLUSION AND DISCUSSION

In summary, we have theoretically and numerically investigated the
effective wave properties, including the effective dynamic dielec-
tric constant tensor εe (kq )= ε

⊥
e (kq )(I − ẑẑ)+ εz

e (kq )ẑẑ and
transmittance T, of 3D statistically anisotropic two-phase layered
media made of 1D disordered stealthy hyperuniform packings.
To predict εe (kq ) of such exotic disordered models, we derived for
the first time a multiple-scattering approximation [Eq. (11)] for
statistically anisotropic media from the strong-contrast-expansion
formalism. Predictions of both the effective dielectric constant
ε⊥e (kq ) and transmittance T are in excellent agreement with cor-
responding results obtained from the FDTD simulations up to
k1/ρ . 1.5. Remarkably, our predictions of T are virtually identi-
cal to the simulation results within the perfect transparency ranges.
Our multiple-scattering approximation is the first closed-form
formula that provides a simple but accurate relation between the
effective wave properties of 3D layered media and their spectral
density that applies well beyond the quasistatic regime. Beyond the
valid range (k1/ρ & 1.5), Eq. (11) can still provide qualitatively
accurate and physically realistic predictions of dielectric responses
since it satisfies the Kramers–Kronig relations.

We applied this newly derived formula [Eq. (11)] to disordered
stealthy hyperuniform layered media at χ = 0.1, 0.2, and 0.3.
It is noteworthy that our multiple-scattering formula [Eq. (11)]
predicts that these disordered systems are perfectly transparent
in the infinite-volume limit for a finite ratio ε2/ε1, implying no
Anderson localization up to a finite wavenumber proportional
to χ , as given by Eq. (12). This observation is remarkable in that
such extended states in 1D disordered systems are more difficult to
achieve than in higher dimensions [17,38–41]. If the localization
length is actually finite, we expect that it will be extremely large for
sufficiently small ε2/ε1 compared to any practically large sample
size in the transparency interval in such stratified media, as will be
reported elsewhere [71]. In contrast, for disordered non-stealthy
layered media, hyperuniform or not, our theory shows that there is
no spectral range of perfect transparency, implying that localization
emerges as the system size grows.

Our findings also have important practical implications. For
example, we clearly demonstrate that disordered stealthy hype-
runiform layered media can be employed as low-pass filters that
transmit waves up to a selected wavenumber. Furthermore, com-
bining our theory with the capabilities to generate media with a
prescribed spectral density [13,24–26] enables an inverse-design
approach [56] to engineer and fabricate layered dielectric mate-
rials with novel wave properties. One possible design is a layered
medium satisfying χ̃V (k)= 0 for k < ε and 2kL < k < 2kU ,
which transmits waves within a narrow spectrum kL < k1 < kU .
Notably, such computationally designed layered media as well as
other 1D disordered models can be readily fabricated via vacuum
deposition [72], spin-coating [73], and 3D printing techniques
[74]. Thus, our results offer promising prospects for engineering
novel optoelectronic devices.

We note that our formalism can be extended to cases of
obliquely incident wave vectors kq , in which both effective
dielectric constants ε⊥e (kq ) and εz

e (kq ) become important.
Moreover, it also will be interesting to extend our theory to lossy
dielectric or metallic phases whose dielectric constants are now
frequency-dependent and complex-valued.
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