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Equilibrium states corresponding to targeted
hyperuniform nonequilibrium pair statistics

Haina Wang a and Salvatore Torquato *bc

The Zhang–Torquato conjecture [G. Zhang and S. Torquato, Phys. Rev. E, 2020, 101, 032124.] states that

any realizable pair correlation function g2(r) or structure factor S(k) of a translationally invariant non-

equilibrium system can be attained by an equilibrium ensemble involving only (up to) effective two-body

interactions. To further test and study this conjecture, we consider two singular nonequilibrium models

of recent interest that also have the exotic hyperuniformity property: a 2D ‘‘perfect glass’’ and a 3D

critical absorbing-state model. We find that each nonequilibrium target can be achieved accurately by

equilibrium states with effective one- and two-body potentials, lending further support to the conjec-

ture. To characterize the structural degeneracy of such a nonequilibrium–equilibrium correspondence,

we compute higher-order statistics for both models, as well as those for a hyperuniform 3D uniformly

randomized lattice (URL), whose higher-order statistics can be very precisely ascertained. Interestingly,

we find that the differences in the higher-order statistics between nonequilibrium and equilibrium

systems with matching pair statistics, as measured by the ‘‘hole’’ probability distribution, provide

measures of the degree to which a system is out of equilibrium. We show that all three systems studied

possess the bounded-hole property and that holes near the maximum hole size in the URL are

much rarer than those in the underlying simple cubic lattice. Remarkably, upon quenching, the effective

potentials for all three systems possess local energy minima (i.e., inherent structures) with stronger forms

of hyperuniformity compared to their target counterparts. Our methods are expected to facilitate the

self-assembly of tunable hyperuniform soft-matter systems.

1 Introduction

Probing and characterizing the structural properties of many-
body systems in and out of equilibrium is a crucial task in the
understanding of a large variety of physical, chemical and
biological phenomena.1–5 An outstanding challenge is the
determination of effective interactions in many-body systems
that accurately yield equilibrium states with prescribed pair
statistics. Solving such inverse problems is a powerful way to
tackle the unsolved problem concerning the realizability of
prescribed functional forms of pair statistics by many-body
systems.6–11 Such investigations also enable one to probe
systems with identical pair statistics but different higher-body
statistics, which is expected to shed light on the well-known
degeneracy problem of statistical mechanics.12–14 Moreover,
such effective potentials can be used to model macromolecules

and solutions,15,16 and to design nanoparticles that self-
assemble into desired structures, thereby facilitating material
discovery.17–20

Recently, Zhang and Torquato conjectured that any realiz-
able pair correlation function g2(r) or structure factor S(k)
corresponding to a translationally invariant nonequilibrium
system can be attained by an equilibrium ensemble involving
only one- and two-body effective interactions at positive
temperatures.11 Testing the conjecture requires the precise
determination of the effective interactions for a spectrum of
target systems, including those with the exotic hyperuniform
property.21,22 Disordered hyperuniform many-body systems,
which can be solid and fluid states, are unusual amorphous
states of matter that lie between a crystal and a liquid. They are
like perfect crystals in the way they suppress large-scale density
fluctuations, and yet are like liquids or glasses in that they are
statistically isotropic with no Bragg peaks;21,22 see Section 2.2
for precise definitions. Disordered hyperuniform states play
vital roles in a variety of different contexts. For example,
disordered stealthy ground states have been discovered23–25

corresponding to under soft, long-ranged interactions, which
are highly degenerate and have the ‘‘bounded-hole’’ property,
which is a singular characteristic for a disordered system.26,27
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Network structures derived from disordered stealthy point
patterns can achieve complete photonic band gaps and have
novel optical properties that were previously not thought to be
possible.28,29 Disordered hyperuniform states also arise in the
eigenvalues of random matrices (such as the Gaussian unitary
ensemble),30–32 ground states of free fermions,31 as well as one-
component plasmas at positive temperatures,33–35 all of which
are exotic fluid states in which the particles interact Coulom-
bically.36 Other examples include glass formation,22,37,38

jamming,39–43 rigidity,38,44 biology,45,46 localization of waves and
excitations,47–50 antenna or laser array designs,51 self-
organization,52–54 fluid dynamics,55–57 quantum systems,31,58–61

and pure mathematics.62–66 Because disordered hyperuniform
states combine the advantages of statistical isotropy and the
suppression of density fluctuations on large scales, they can be
endowed with novel physical properties.22,28,29,37,38,45,46,52–54,67

While Zhang and Torquato introduced an algorithm to draw
equilibrium classical particle configurations from canonical
ensembles with one- and two-body interactions that correspond
to targeted functional forms for g2(r) or S(k), the algorithm does
not generate explicit forms of the potentials.11 Very recently,
Torquato and Wang developed an inverse methodology that
determines effective interactions with unprecedented accuracy.68

Using this procedure, they demonstrated the realizability of g2(r)
for all r and S(k) for all k for two different nonequilibrium models,
including a two-dimensional (2D) nonhyperuniform random
sequential addition process and a 3D hyperuniform ‘‘cloaked’’
uniformly randomized lattice (URL).68 However, the Zhang–
Torquato conjecture remains largely untested.

In this paper, we utilize this precise inverse methodology68

to further test and study the Zhang–Torquato conjecture for
unusual nonequilibrium hyperuniform systems. Hyperuniform
targets are particularly challenging because at positive tem-
perature T, they require a long-ranged pair interaction v(r) that
must be balanced by one-body potentials to stabilize the
equilibrium system.22

Prior to the development of our inverse methodology,68

predictor–corrector methods,69–72 such as Iterative Boltzmann
inversion (IBI)71 and iterative hypernetted chain inversion
(IHNCI),72,73 were regarded to be the most accurate inverse
procedures. Both IBI and IHNCI begin with an initial discretized
(binned) approximation of a trial pair potential. The trial pair
potential at each binned distance is iteratively updated to attempt
to reduce the difference between the target and trial pair statistics.
However, IBI and IHNCI cannot treat long-ranged pair inter-
actions required for hyperuniform targets nor do they consider
one-body interactions that stabilize hyperuniform equilibrium
states;68 see Section 2.2 for details. These algorithms also accu-
mulate random errors in the binned potentials due to simulation
errors in the trial pair statistics and thus do not achieve the
precision required to probe realizability problems. Moreover,
because all previous methods do not optimize a pair-statistic
‘‘distance’’ functional, they are unable to detect poor agreement
between the target and trial pair statistics that may arise as the
simulation evolves, leading to increasingly inaccurate corres-
ponding trial potentials, as demonstrated in ref. 68.

The inverse methodology presented in ref. 68 improves on
previous procedures in several significant ways. It utilizes a
parameterized family of pointwise basis functions for the
potential function at T 4 0, whose initial form is informed
by small- and large-distance behaviors dictated by the
statistical-mechanical theory. Pointwise potential functions do
not suffer from the accumulation of random errors during a
simulation, resulting in more accurate interactions.68 Since it
has recently been established74 that inverse methods that target
only g2(r) or only S(k) for a limited range of r or k may generate
effective potentials that are distinctly different from the unique
potential dictated by Henderson’s theorem,75 our methodology68

minimizes an objective function that incorporates both the target
pair correlation function g2(r) and structure factor S(k) so that
both the small- and large-distance correlations are very accurately
captured. For hyperuniform targets, our methodology is able to
optimize the required long-ranged pair potential76 as well as the
neutralizing background one-body potential;68 see Section 4 for
details.

To assess the accuracy of inverse methodologies to target
pair statistics, we introduced68 the following dimensionless
L2-norm error:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dg2 þDS

p
; (1)

where Dg2
and DS are L2 functions, given by

Dg2 ¼ r
ð

Rd

g2;TðrÞ � g2;Fðr; aÞ
� �2

dr; (2)

DS ¼
1

rð2pÞd
ð

Rd

STðkÞ � SFðk; aÞ½ �2dk; (3)

where g2,F(r;a) and SF(k;a) represent the final pair statistics at
the end of the optimization, which depend on the vector of
potential parameters a. We have previously shown that our
method is able to treat challenging near-critical and hyperuni-
form targets,68 which previous methods cannot do. Thus, it is
the only available method to determine effective interactions
for nonequilibrium hyperuniform pair statistics. Moreover, in
cases where IBI and IHNCI are able to achieve optimized
potentials, e.g., for equilibrium target pair statistics without
long-range interactions, our inverse methodology generally
yields L2-norm errors (1) that are an order of magnitude smaller
than those via previous methods and reaches the precision
required to recover the unique potential dictated by Hender-
son’s theorem.75

We study two models of recent interest from hitherto
unexplored hyperuniformity classes, including a 2D perfect
glass38 and a 3D critical absorbing-state model;2,52 see Section
3 for detailed descriptions of the models and Section 2.2 for the
definition of hyperuniformity classes. We show that the pair
statistics of both systems can be achieved by effective poten-
tials, which lends further support to the Zhang–Torquato
conjecture. We define a nonequilibrium–equilibrium correspon-
dence to be a nonequilibrium and a equilibrium system with
identical number density and pair statistics. Such correspon-
dences have important concequences, including a capacity to
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explore the thermodynamic and dynamic properties of the
effectively equivalent equilibrium systems, such as phase beha-
viors, ground states and inherent structures, i.e. local energy
minima.77 Inherent structures are properties of the energy
landscape that are used to estimate various thermodynamic
and dynamic properties, including heat capacity, melting point
and glass transition temperature.78,79 Furthermore, structural
properties of the equilibrium states, such as nearest-neighbor
probability distribution functions and percolation threshold,
enable one to infer these nontrivial attributes of the non-
equilibrium states, which are crucial in determining the
mechanical and electronic properties of materials.80

The aforementioned nonequilibrium–equilibrium correspon-
dence also enables one to probe the degeneracy of structures with
the same pair statistics.12–14 It is known that for a homogeneous
many-body system, one- and two-body correlations are insufficient
to uniquely determine the higher-body correlation functions g3,
g4, . . ..9 Equilibrium and nonequilibrium systems that possess
matching pair statistics must have different higher-body statistics,
and such differences reflect the specific dynamics of the non-
equilibrium state.74

To study the structural degeneracy of the nonequilibrium–
equilibrium correspondence, we compute higher-order statis-
tics for the perfect glass and critical absorbing-state models, as
well as those for a hyperuniform 3D cloaked URL,81 whose
higher-order statistics can be determined with much higher
precision than those of typical fluids. The effective potential for
the URL has been previously determined, but the physical
properties of this nonequilibrium–equilibrium pair have not
yet been thoroughly studied.68 We consider the readily compu-
table ‘‘hole’’ probability density functions EV(r) and GV(r),
which are related to the probability of finding holes of radius
r void of particles and reflect information about all n-particle
correlation functions g2, g3, g4, . . .;82 see Section 2.3 for precise
definitions. We show that each model has the ‘‘bounded-hole’’
property,27,44 i.e., the maximum hole size is bounded, and
differences in hole probability functions between the none-
quilibrium and equilibrium systems provide a useful nonequili-
brium index. To study the behavior of the hole probability
functions on approach to the maximum hole size, we introduce
a precise algorithm to compute these functions for the target
URL. We apply this algorithm to show that holes near the
maximum hole size in the target URL are much rarer than those
in the underlying simple cubic (SC) lattice.

To study the effect of quenching on the effectively equivalent
equilibrium systems, we compute the inherent structures77 of
the effective potentials for all three models. We find that all
effective potentials yield inherent structures that are of stronger
forms of hyperuniformity compared to those of their corres-
ponding target systems. Our findings are expected to facilitate
the self-assembly of tunable hyperuniform soft-matter systems.

We begin by providing basic definitions and background in
Section 2. In Section 3, we describe the model nonequilibrium
hyperuniform systems. Section 4 provides a sketch of our inverse
methodology.68 Section 5 presents results for the equilibrium
systems corresponding to the nonequilibrium pair statistics,

including the optimized potential and configurations (Section
5.1), higher-order statistics (Section 5.2) and inherent structures
(Section 5.3). We provide concluding remarks in Section 6.

2 Preliminaries and definitions
2.1 Pair statistics

We consider many-particle systems in d-dimensional Euclidean

space Rd that are completely statistically characterized by the
n-particle probability density functions rn(r1,. . .,rn) for all
n Z 1.83 In the case of statistically homogeneous systems,
r1(r1) = r and r2(r1,r2) = r2g2(r), r is the number density in
the thermodynamic limit, g2(r) is the pair correlation function,
and r = r2 � r1. If the system is also statistically isotropic, then
g2(r) is the radial function g2(r), where r = |r|. The ensemble-
averaged structure factor S(k) is defined as

S(k) = 1 + rh̃(k), (4)

where h(r) = g2(r) � 1 is the total correlation function, and h̃(k)
is the Fourier transform of h(r).

For a single periodic configuration containing number of N
point particles at positions r1, r2, . . ., rN within a fundamental
cell F of a lattice L, the scattering intensity IðkÞ is defined as

IðkÞ ¼

PN
i¼1

e�ik�ri
����

����
2

N
: (5)

For an ensemble of periodic configurations of N particles
within the fundamental cell F, the ensemble average of the
scattering intensity in the infinite-volume limit is directly
related to structure factor S(k) by

lim
N;VF!1

hIðkÞi ¼ ð2pÞdrdðkÞ þ SðkÞ; (6)

where VF is the volume of the fundamental cell and d is the
Dirac delta function.22 In simulations of many-body systems
with finite N under periodic boundary conditions, eqn (5) is
used to compute S(k) directly by averaging over configurations.

2.2 Hyperuniformity

A hyperuniform point configuration in d-dimensional Eucli-

dean space Rd possesses a structure factor S(k) that goes to zero
as the wave number k vanishes, i.e., lim kj j!0 SðkÞ ¼ 0; which
corresponds to a local number variance sN

2(R) in a spherical
window of radius R that grows slower than Rd.21,22 For hyper-
uniform systems whose structure factor is given by a power-law
in the vicinity of the origin, i.e.,

S(k) B |k|a, |k| - 0. (7)

The value of the exponent a 4 0 determines three different
‘‘classes’’ of hyperuniformity,21,22,84 i.e.,

s2ðRÞ �

Rd�1; a4 1ðclass IÞ

Rd�1 lnR; a ¼ 1ðclass IIÞ

Rd�a; 0o ao 1ðclass IIIÞ:

8>>><
>>>:

(8)
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Stealthy hyperuniform systems, which include all perfect crys-
tals and unusual disordered states,26,85 are defined to be those
that possess zero intensity of the structure factor for a set of
wavevectors around the origin,85 i.e.,

S(k) = 0, for 0 r |k| r K, (9)

where K 4 0. They are class I hyperuniform states that can be
roughly regarded to be those in which a - N.

To achieve equilibrium hyperuniform systems at positive T,
which are thermodynamically incompressible, one requires the
following long-ranged pair interaction in the large-r limit:22

vðrÞ � r�ðd�aÞ; daa
� lnðrÞ; d ¼ a:

�
(10)

A notable example of which is the one-component plasma
(OCP), in which identical point charges interacting via the

Coulomb potential in Rd are immersed in a rigid, uniform
background of opposite charge to ensure overall charge
neutrality.35 Such long-ranged potentials can be precisely deter-
mined via our inverse methodology; see Section 4.

2.3 Higher-order statistics

Due to the complexity of computing and storing full pointwise
information of all n-particle correlation functions g3, g4, g5,. . .,
this work considers higher-order statistics that are readily
computable, including the conditional ‘‘hole’’ probability density
function GV(r) and g3 for special triangles.

Given that a spherical region OV(r) of radius r is empty of
particles, the quantity rs1(r)GV(r)dr is the probability of finding
particles in a spherical shell of volume s1(r)dr, where s1(r) is the
surface area of a d-dimensional sphere of radius r. The function
GV(r) can be expressed in terms of integrals over all the
n-particle correlation functions g2, g3, g4,. . ..82 Importantly,
GV(r) is directly related to the void-exclusion probability function
or ‘‘hole’’ probability function EV(r), which gives the probability
of finding a randomly located spherical region of radius r
empty of particles,80 via the relation

GVðrÞ ¼ �
E
0
VðrÞ

rs1ðrÞEVðrÞ
: (11)

A many-body system possesses the bounded-hole property if
EV(r) has compact support, i.e., if the maximum hole radius rc is
bounded. In contrast, typical liquids possess holes of arbitrarily
large size.86 The bounded-hole property characterizes dis-
ordered ‘‘stealthy’’ hyperuniform states27,44,87 and random
sequential addition at saturation,88,89 but has been hitherto
unexplored for perfect glasses and absorbing-state models.

We also study the three-body statistics for small triangles,
and especially the distribution of bond angles y. Thus, we
express g3 in terms of y, i.e.,

g3ðr1; r2; yÞ ¼
r3 r1; r2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 þ r22 � 2ab cosðyÞ

p� �
r3

; (12)

where r3(r1,r2,r3) is probability density of finding three particles
that form a triangle with side lengths r1, r2 and r3.

3 Nonequilibrium hyperuniform
models

Here, we describe the three nonequilibrium target models we
consider, i.e., perfect glasses, critical absorbing-state models
and URLs, as well as the method of generating their corres-
ponding configurations. They are hyperuniform systems of
recent interest and have important applications in photonics
engineering,90 packing problems,91 active matter92 and geo-
science.93

3.1 Perfect glasses

Perfect glasses are exotic amorphous states of matter with
positive bulk and shear moduli that banish any crystalline or
quasicrystalline phases and form unique (nondegenerate) dis-
ordered states up to trivial symmetries.38,94 These states can be
regarded as prototypical glasses since they are out of equili-
brium, maximally disordered, hyperuniform, mechanically
rigid with infinite bulk and shear moduli, and remarkably
prohibit the formation of crystals and quasicrystals from the
ground-state manifold due to configuration-space trapping.
The pair statistics of certain perfect glasses can be realized by
equilibrium canonical ensembles,11 but the explicit forms of
the underlying potentials have heretofore remained unknown.

A perfect glass is created by cooling a many-body system
from high to zero T with total potential energy FN(rN):38

FðrNÞ ¼
X

0o jkjoK

~wðkÞ SðkÞ � S0ðkÞ½ �2; (13)

where rN denotes the positions of the N particles in Rd that are
subject to optimization, K is the magnitude of the largest
constrained wavevector, w̃(k) is a weight function, and S0(k) is
the desired small-k behavior of the perfect-glass structure
factor. The number of independently constrained wavevectors
divided by the total number of degrees of freedom, d(N� 1), is a
parameter w that measures how constrained is the system.
Here, we study a class II hyperuniform perfect glass with the
exponent a = 1. Following ref. 38, we choose the parameters
N = 2500, w̃(k) = (K/|k| � 1),3 S0(k) = |k|/K, w = 5.1 and K = 10/a,
where a is a length scale taken to be unity. These parameters
are chosen so that the position of the first peak in the perfect-
glass g2(r) is close to r = 1. We generate perfect-glass configura-
tions by finding local minima of F(rN) using the low-storage
BFGS algorithm,95 starting from Poisson initial configurations;
see ref. 38 for further details.

3.2 Critical absorbing states

Random organization models reveal how chaotically-driven
nonequilibrium many-body systems can self-organize.2,52,96

Such models have been applied to study the dynamic phase
transition of periodically sheared particles at the onset of
irreversibility.97 Hexner and Levine showed that such critical
absorbing states are class III disordered hyperuniform with
a = 0.25 in three dimensions.52

Following ref. 52, we generate critical-absorbing states as
follows: starting from a Poisson initial configuration of N
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spherical particles with unit diameter D, a particle is deemed
‘‘active’’ if it overlaps with another particle. In each iteration, all
active particles are given a randomly oriented displacement,
whose magnitude is uniformly distributed on [0,sD/2], where s
is a displacement-size parameter. The process is repeated until
an absorbing state is reached where no particles overlap,
resulting in a packing of packing fraction f = rpD3/6, or until
106 iterations are performed, implying that the system is an
active state. The critical state with packing fraction fc is
determined such that half of the initial configurations with
r = 6fc/(pD3) reach absorbing states, while the rest are active
states. In this work, we choose N = 105 and s = 0.1, and estimate
fc to be 0.205 � 0.0005.

3.3 Uniformly randomized lattices

Perturbed lattices serve as important models in cosmology,
crystallography and probability theory.98,99 Uniformly rando-
mized lattices are simple perturbed lattices that are class I
hyperuniform with a = 2.81 For 3D URL models, each lattice
point in a lattice, here taken to be the SC lattice Z3, is displaced
by a random vector that is uniformly distributed on [�b/2,b/2)3,
where the scalar factor b 4 0 is the perturbation strength. By
definition, the lattice constant is set to be unity. It has been
shown that the structure factor for the URL point process
contains Bragg peaks that coincide with the unperturbed lattice
as well as a diffuse part such that limk!0 SðkÞ � k2.81,100,101

Remarkably, Klatt et al. showed that the Bragg peaks in the
structure factors vanish completely, or become ‘‘cloaked’’,
when b takes integer values.81

In this work, we study the 3D cloaked URL with b = 1, whose
effective potential has a Coulombic asymptotic form, i.e.,
v(r;a) B 1/r, as we have previously determined.68 Due to the
independence of the particles, URLs are ideal models to study
statistical structural descriptors, as they are more readily com-
putable compared to models with correlated particles. As we
will show in Section 6, EV(r) [and thus GV(r)] for this model can
be numerically evaluated to very high precision via our Monte-
Carlo integration technique.

4 Inverse methodology

Here, we sketch the methodology that we have recently introduced68

to determine (up to) pair interactions that yield canonical ensembles
that very accurately match both target g2(r) for all r and target S(k) for
all k. Importantly, for a statistically homogeneous system equili-
brated under up to two-body interactions, this technique is able to
extract the unique target-generating pair potential dictated by
Henderson’s theorem.75 The reader is referred to ref. 68 for a
comprehensive description of the inverse methodology.

The methodology optimizes a parameterized isotropic
potential function v(r;a) that can be written as a sum of n
smooth pointwise basis functions, i.e.,

vðr; aÞ ¼ e
Xn
j¼1

fjðr=D; ajÞ; (14)

where fj (r/s;aj) is the jth basis function, aj is a vector of
parameters (generally consisting of multiple parameters), a =
(a1,a2,. . .,an) is the ‘‘supervector’’ parameter whose components
are a collection of all components of all aj’s, e sets the energy
scale and D is a characteristic length scale, which is taken to be
unity. Examples of the basis functions include the hard core as
well as superexponential-, exponential-, Yukawa- and power-
law-damped oscillatory functions. The components of aj are of
four types: dimensionless energy scales ej, dimensionless dis-
tance scales sj, dimensionless phases yj, as well as dimension-
less exponents pj.

The initial form of v(r;a) is informed by the small- and large-
distance behaviors of the target pair statistics g2,T(r) and ST(k),
as dictated by the statistical-mechanical theory.22 For hyperuni-
form targets, the large-r behavior of the potential is determined
by eqn (10). To obtain an initial form of the small- and
intermediate-r behavior of v(r;a), we numerically fit the hyper-
netted chain (HNC) approximation83 for the target pair statis-
tics using the aforementioned forms of basis functions. The
HNC approximation is given by

bvHNC(r) = hT(r) � cT(r) � ln[g2,T(r)], (15)

where hT(r) = g2,T(r) � 1 and cT(r) is the target direct correlation
function, whose Fourier transform is given by the Ornstein–
Zernike integral equation102

~cTðkÞ ¼
~hTðkÞ
STðkÞ

: (16)

Next, a nonlinear optimization procedure95 is used to mini-
mize an objective function C(a) based on the distance between
target and trial pair statistics in both direct and Fourier spaces:

CðaÞ ¼ r
ð

Rd

wg2ðrÞ g2;T ðrÞ � g2ðr; aÞ
	 
2

dr

þ 1

rð2pÞd
ð

Rd

wSðkÞ ST ðkÞ � Sðk; aÞð Þ2dk;
(17)

where g2,T(r) and ST(k) are target pair statistics, wg2
(r) and wS(k)

are weight functions, and g2(r;a) and S(k;a) correspond to an
equilibrated N-particle system under v(r;a) at a dimensionless
temperature kBT/e = 1, which can be obtained from Monte-Carlo
(MC) (used here with N = 500) or molecular dynamics simula-
tions under periodic boundary conditions. The optimization
procedure ends when C(a) is smaller than some small tolerance
E. If convergence is not achieved, then a different set of basis
functions is chosen and the optimization process is repeated.
If convergence is achieved, we check whether the effective
potential robustly generates the target pair statistics for systems
larger than those used during the optimization process. We
performed MC simulations under the optimized potentials with
N = 2500 for 2D systems and N = 9261 for 3D systems, and
utilized the dimensionless L2 functions [(2) and (3)] and the
dimensionless total L2-norm error (1) between target and trial
pair statistics to assess how close these quantities match.

For hyperuniform targets, v(r;a) has the long-ranged asymp-
totic form given by eqn (10), which can be regarded as a
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generalized Coulombic interaction of ‘‘like-charged’’ particles.22

Thus, one requires a neutralizing background one-body potential
to maintain stability.22,33–35† Importantly, to perform the MC
simulations, the total potential energy involving the long-ranged
one- and two-body potentials is efficiently evaluated using the
Ewald summation technique.103 It is noteworthy that the opti-
mized potentials via our methodology generally yield pair statis-
tics that accurately match their corresponding targets with total
L2-norm errors that are an order of magnitude smaller than that
of previous methods, in cases where previous methods are
applicable.68

5 Results for the nonequilibrium–
equilibrium correspondence
5.1 Optimized equilibrium states

Here, we present the effective potentials and the pair statistics
for the equilibrium states corresponding to the target none-
quilibrium states. Appendix B gives the explicit functional
forms of the optimized potentials.

Fig. 1 shows the configurations of the target and optimized
systems for the perfect glass as well as the corresponding
effective pair potential and pair statistics. As shown in
Fig. 1(a) and (b), the nonequilibrium and equilibrium config-
urations are visually very similar. The optimized effective pair
potential has the expected asymptotic behavior v(r) B 1/r, as
dictated by eqn (10). The short-ranged part of the potential
[Fig. 1(c)], i.e., v(r) � 4.572/r, contains two local minima at
pair distances 1.20 and 2.10, respectively. Fig. 1(d) and (e) show
g2(r) and S(k), respectively, for the target and optimized
systems with N = 2500. Fig. 1(f) depicts the structure factors
on a log-log scale, showing that they are linear in k at small k.
We find that the L2 functions [eqn (2) and (3)] are Dg2

= 0.0030,
DS = 0.0030 and the L2-norm error (1) is = 0.077, showing that
the pair statistics of the perfect glass are in excellent agree-
ment with those of the optimized equilibrium system in both
direct and Fourier spaces. Note that these errors are an order
of magnitude smaller than the errors obtained via IHNCI
for typical equilibrium dense liquids.68 Remarkably, these
results imply that one can reproduce structures that arise from
two-, three, and four-body interactions via effective pair
interactions.

Fig. 2 presents the configurations, effective pair potential
and pair statistics of the target and optimized systems for the
absorbing-state model. The target and optimized configura-
tions closely resemble each other [Fig. 2(a) and (b)]. The
effective pair potential [Fig. 2(c)] contains a hard core and a
sharp minimum at the sphere diameter r = 1. It decays
asymptotically as v(r) B r�2.75, which yields the correct k0.25

behavior of S(k) at small k. We see that both g2(r;a) and S(k;a)
with N = 9261 are in excellent agreement with those of the
target system (Fig. 2(d)–(f)), as manifested by the small values of

the L2 functions [eqn (2) and (3)] and the L2-norm error (1),
given by Dg2

= 0.0020, DS = 0.0022 and E ¼ 0:066.
Fig. 3 shows the configurations, effective pair potential and

pair statistics of the target and optimized systems for the 3D
URL model, which have been previously determined and pre-
sented in ref. 68. Fig. 3(a) and (b) show that the target and the
optimized systems configurations are visually indistinguish-
able. Fig. 3(c) shows the short-ranged part of the effective
potential, i.e. v(r;a) � 0.940/r against r. Fig. 3(d)–(f) show g2(r)
and S(k) for the target and optimized systems with N = 9261.
The pair statistics of the target cloaked URL are in excellent
agreement with those of the optimized equilibrium system in
both direct and Fourier space, respectively. The L2 functions are
Dg2

= 4.8 � 10�4 and DS = 7.5 � 10�4 and the L2-norm error is

Fig. 1 (a) A 2500-particle configuration of the 2D perfect glass. (b) A
2500-particle configuration of the optimized equilibrium state corres-
ponding to the perfect glass. (c) Short-ranged part of the optimized pair
potential. (d) Targeted and optimized pair correlation functions with N =
2500. Here, we find that the L2 norm function is Dg2

= 0.0030. (e) Targeted
and optimized structure factors with N = 2500. Here, we find that the L2

norm function is DS = 0.0030. The L2-norm error is E ¼ 0:077. (f) Log–log
plot of the targeted and optimized structure factors, showing their k1

scaling behavior at small k.

† Such background terms have been employed to study numerically the one-
component plasma33,34 and the Dyson log gas.35
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E ¼ 0:035, all of which are remarkably small. For all models,
the effective potentials accurately yield the desired target pair
statistics for system sizes much larger than N = 500 used in the
optimization procedure. Thus, the nonequilibrium–equili-
brium correspondences found in this study are robust to
further increases in the system size.

5.2 Higher-order statistics

Since the targeted and optimized systems have essentially the
same pair statistics, we expect that due to the aforemen-
tioned structural degeneracy, the dynamics leading to the

nonequilibrium states is reflected in the differences in their
higher-order statistics compared to the corresponding equili-
brium states. Here, we present the higher-order statistics of the
nonequilibrium–equilibrium pairs, including GV(r) for all
models and g3 for the perfect glass and the critical absorbing
state at specific small triangles. Note that g3 and g4 for the URL
have been discussed in ref. 81.

In Appendix A, we describe a new and precise numerical
algorithm to compute the hole probabilities for the nonequilibrium

Fig. 2 (a) A 1000-particle configuration of the 3D critical absorbing-state
model. (b) A 1000-particle configuration of the optimized equilibrium state
corresponding to the critical-absorbing state. (c) Short-ranged part of the
optimized pair potential. (d) Targeted and optimized pair correlation
functions with N = 9261. Here we find that the L2 function is Dg2

=
0.0020. (e) Targeted and optimized structure factors with N = 9261. Here
we find that the L2 function is DS = 0.0022. The L2 norm error is = 0.066.
(f) Log–log plot of the targeted and optimized structure factors, showing
their k0.25 scaling behavior at small k.

Fig. 3 (a) A portion of a representative 3D 2744-particle configuration of
a cloaked URL system. Only 512 particles are displayed. (b) A portion of a
3D configuration of a 2744-particle system that is equilibrated under the
optimized effective one- and two-body potential for the target 3D cloaked
URL. Only 512 particles are displayed. (c) Optimized pair potential minus its
long-ranged repulsive part 0.940/r. (d) Targeted and optimized pair
correlation functions with N = 9261. Here we find that the L2 function is
Dg2

= 4.8 � 10�4. (e) Targeted and optimized structure factors with N =
9261. Here we find the L2 function is Dg2

= 7.5 � 10�4. The L2-norm error is
E ¼ 0:035. (f) Log–log plot of the targeted and optimized structure factors,
showing their k2 scaling behavior at small k. Subfigures (a)–(e) are repro-
duced from the ones first presented in ref. 68.
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cloaked URLs in any space dimension d, which exploits the
independence of particles in the URLs to achieve much higher
accuracy than the standard method.81 Fig. 4(a) and (b) show GV(r)
of the nonequilibrium–equilibrium pairs for the 2D perfect glass,
the 3D critical absorbing state and the 3D cloaked URL, respec-
tively. For all three models, while the target and optimized GV(r)
agree closely in the range where r is below half of the characteristic
length scale, they become increasingly different at larger r,
revealing distinctly different higher-order statistics between the
nonequilibrium and equilibrium systems. Importantly, both target
and optimized GV(r) for all systems studied exhibit steep rises at
sufficiently large r, indicating that they possess the bounded-hole
property.27,44

The forms of the effective potentials for the perfect glass and
critical-absorbing state allow us to conclude that these models
have the bounded-hole property since the potentials contain
hard cores (an effective hard core in the perfect-glass case),
small but positive repulsions at intermediate r, and long-
ranged repulsions at large r that ensure hyperuniformity. Thus,
particles of the resulting packings are well-separated from one
another at all length scales. It is noteworthy that the bounded
hole property applies for perfect glasses with any a 4 0,
because of the nature of the long-ranged two-, three- and
four-body interactions.38 Indeed, we have also computed the
hole probabilities for a different perfect glass with a = 2 and
confirmed its bounded-hole property.

Using the technique described in Appendix A, we accurately
determine that EV(r) for the target URL in the limit r-rc

�

exhibits a form first derived in ref. 87, namely, EV(r) B (rc � r)g,
where g = 32. Thus, eqn (11) gives

GVðrÞ �
g

rs1ðrÞðrc � rÞ r! rc
� (18)

i.e., GV(r) has a pole of order one, as derived in ref. 87.
Compared to the SC lattice, for which g = d = 3,87 the very large
g value for the URL indicates that holes close to the critical-hole

size are rarer in disordered systems, as noted in ref. 87. Also
note that unlike the other two models, GV(r) for the target URL
is higher than the optimized equilibrium GV(r), suggesting that
the target URL is locally more homogeneous than its equili-
brium counterpart due to the underlying lattice.

We propose the following scalar nonequilibrium index, G,
that reflects differences in the higher-order correlation func-
tions g3, g4,. . . for a nonequilibrium–equilibrium pair with
matching pair statistics:

G ¼ r
ð
jrjo rmax

GVðjrjÞ � GV ;T ðjrjÞ
� �2

dr; (19)

where GV and GV,T are conditional ‘‘hole’’ probability density
distributions for the optimized and target systems, respectively,
and rmax is a cutoff radius corresponding to the largest hole
radius detected in an ensemble of finite-size configurations.‡
By definition, GV(r) in (19) must be computed at kT=e ¼ 1,
because it is only at this dimensionless temperature that the
nonequilibrium and equilibrium pair statistics match. Note
that G is a purely static nonequilibrium index, i.e., its computa-
tion does not require dynamic information. Importantly, for a
statistically homogeneous equilibrium target system under up
to two-body interactions, one has G = 0, because the optimized
pair potential obtained via the inverse methodology (Section 4)
must agree with the unique target-generating potential, yielding
GV(r) = GV,T(r) for all r.

Except for the target URL, whose GV(r) can be evaluated up to
arbitrary precision, we determine rmax and compute GV(r) using
500 configurations with N = 2500 for 2D systems and N = 9261
for 3D systems. Table 1 shows the value of G for the three
models shown in Fig. 4. The URL has a much larger G value
compared to those of the other two systems. This high degree of
‘‘nonequilibriumness’’ is expected for the cloaked URL, since g4

for the target system exhibits long-range order characteristics of
the underlying lattice.81 An equilibrium fluid cannot possess
any long-range order.

We also study the three-body statistics for the perfect glass
and the critical absorbing state at small triangles. In the case of
the perfect glass, we compute the integral

f ðyÞ ¼
ð1:15
jr1j¼0

ð1:15
jr2j¼0

g3ðr1; r2; yÞdr1dr2; (20)

where g3(r1,r2,y) is given by (12). We evaluate f (y) instead of g3 at
individual triangles because much higher accuracy can be
achieved for the former. Fig. 5(a) depicts f (y) for the target
and optimized perfect glass systems. We find that compared to
the equilibrium system, the target perfect glass contains 50%
more nearly linear small triangles with y 4 1701. This differ-
ence is likely due to the actual three and four-body potential in
the target perfect-glass system.38

In the case of the critical-absorbing-state model, we com-
pute g3 at individual triangles, as it can be evaluated with high

Fig. 4 Conditional ‘‘hole’’ probability density functions for three target
and optimized systems. Note the different scales in the axes. (a) 2D perfect
glass. The inset shows a magnified portion of the plots. (b) 3D critical
absorbing-state model. (c) 3D cloaked URL.

Table 1 Values of the metric G [eqn (19)] for the systems shown in Fig. 4

System G

2D perfect glass 4.9
3D critical-absorbing state 9.2
3D cloaked URL 54

‡ If the target and optimized systems have different largest detected hole radii,
rmax is chosen to be the smaller of the two. The aforementioned difference is
within 0.1r1/d for all three models.
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accuracy. Fig. 5(b) shows g3(r1,r2,y) for small isosceles triangles
with r1 = r2 = 1.05 for the target and optimized critical absorbing
state, from which it is clear that the target system significantly
suppresses the formation of small triangles that are nearly
equilateral. Indeed, their difference of g3 for small equilateral
triangles is 90%. This is due to the specific dynamics during the
random organization process, where particles are displaced to
avoid collisions.2 Dense clusters that contain many small
equilateral triangles are less likely to be found in the none-
quilibrium state since collisions are more frequent within such
clusters. On the other hand, the equilibrium state forms more
dense clusters due to the sharp well of v(r) at the hard-sphere
diameter.

5.3 Inherent structures

To study the effect of quenching on the hyperuniform equili-
brium systems, we ascertain the inherent structures of the
perfect-glass and critical-absorbing-state potentials by finding
deep local energy minima via the low-storage BFGS algorithm,95

starting from equilibrium initial configurations with N = 1000
for d = 2 and N = 1728 for d = 3, and averaging over 200
configurations. We find that the energy per particle ĒIS of these
structures are narrowly distributed above the ground-state
energies; see Appendix C for details. We compute the inherent-
structure pair statistics by averaging over configurations whose
energies are within two standard deviations around the mean
value of ĒIS.

Fig. 6(a) shows a disordered inherent structure for the
perfect-glass effective potential, which contains chains of par-
ticles separated by ‘‘channels’’ with a well-defined width. The
first three peaks of the associated g2(r) [Fig. 6(b)] correspond to
the nearest-neighbor distance, the channel width, and the
second-nearest neighbor distance along the chains, respec-
tively. The first and second peaks occur at r = 1.27 and r =
2.20, respectively, which are close to the locations of the first
and second minima of the short-ranged part of v(r). Fig. 6(c)
depicts S(k) for the inherent structures.

To extract the small-k behaviors of the structure factors, we
use the concept of diffusion spreadability introduced in ref. 64,
defined as follows. Consider the time-dependent problem of
mass transfer of a solute between two phases and assume that

the solute is initially distributed in one phase (phase 2) and
absent from the other (phase 1). The spreadability SðtÞ is the
fraction of total solute present in phase 1 as a function of time.
For sphere packings, which include the perfect glass and the
critical absorbing state, SðtÞ can be computed from simulated
S(k) via the Fourier-space expression derived in ref. 64.
Recently, Wang and Torquato93 introduced an algorithm that
efficiently and accurately extracts the exponent a from numer-
ical data of SðtÞ. The algorithm extracts a as well as a ‘‘set-in’’
time tS of the asymptotic behavior of SðtÞ by solving the
following relations via a predictor–corrector procedure

jSðtÞ �Slðt; aÞj ¼ E; t ¼ tS;

jSðtÞ �Slðt; aÞjo E; t4 tS
(21)

where E4 0 is a convergence criterion and Slðt; aÞ is the large-t
spreadability approximant. For nonstealthy media, one has
t�(d+a)/2.64 It has been shown that the aforementioned algo-
rithm is more robust to simulation noise than a direct numer-
ical fit of S(k) at small k, and accurately extracts a with errors
less than 1% for a wide range of models.93 We find that the
inherent structures are hyperuniform with a = 2.0. Fig. 6(d)
depicts S(k) for the inherent structures on a log–log scale,
showing clearly the k2 behavior at small k. Thus, the inherent
structures of a stronger form of hyperuniformity (class I) than
that of the target structure. Fig. 7 shows a disordered inherent
structure for the critical-absorbing-state potential, as well as the
inherent-structure pair statistics, indicating that it is again

Fig. 5 (a) Plot of f ðyÞ ¼
Ð 1:15
jr1 j¼0

Ð 1:15
jrj2¼0

g3ðr1; r2; yÞdr1dr2 against y for the
target and optimized perfect glass systems. (b) Plot of g3(1.05,1.05,y)
against y for the target and optimized critical absorbing state systems.

Fig. 6 (a) A 1000-particle configuration of an inherent structure for the
effective potential for the perfect glass. (b) Pair correlation function of the
inherent structure. (c) Structure factor of the inherent structure. (d) Log–
log plot of the structure factor for the inherent structure, showing the k2

scaling at small k.
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hyperuniform with a = 2. In contrast, a for the URL potential68

dramatically increases from 2 at unit temperature to infinity
upon quenching, as the inherent structure is the SC lattice.
Thus, in all three cases, the inherent structures are of higher
forms of hyperuniformity than the target models.

To verify that the increase of a upon quenching is robust to
the system size, we also computed the inherent structures for
the critical-absorbing state with N = 512, 729 and 1000, in
addition to N = 1728. We observed that while the structure
factors for these system sizes are slightly different due to finite-
size effect, they all exhibit k2 scaling behaviors at small k,
indicating that the inherent structures possess a large hyper-
uniformity scaling regime43 that grows with N.

6 Conclusions and discussion

We have determined equilibrium systems with effective one-
and two-body interactions that realize the pair statistics of three
hyperuniform nonequilibrium models of recent interest: a
2D perfect glass, a 3D critical-absorbing state and a 3D cloaked
URL, which lends further support to the Zhang–Torquato
conjecture. In the case of the perfect glass, it is noteworthy
that we are able to mimic systems with up to four-body
interactions through effective one-body and isotropic two-
body interactions. This finding offers promise to determining
effective one- and two-body interactions that mimic systems

with directional interactions, such as amorphous graphene104

and amorphous silicon,105 governed by up to three- and higher-
body interactions.106,107 We have shown that all three models
considered in this study have the bounded-hole property.

The volume integral of the squared differences of GV(r)
between such nonequilibrium and equilibrium systems with
identical pair statistics enables us to define a nonequilibrium
index G [eqn (19)], which can be applied to measure the
‘‘nonequilibriumness’’ in many systems of practical interest,
including supercooled liquids,37 defects,108 self-propelling
particles5,109 and biological tissues.110 We remark that a differ-
ent static nonequilibrium index X has been proposed pre-
viously, which is based on the deviation of S(0) from rkTkBT,
where kT is the isothermal compressibility.37 In comparison, G
extracts the nonequilibriumness from structural information
alone, and can be applied in situations where kT (or the
pressure) is not readily available. We also introduced a precise
numerical algorithm to compute EV(r) for the cloaked URL and
applied it to show that holes near the maximum hole size in the
URL are much rarer than those in the underlying SC lattice.

Remarkably, our effective potentials yield hyperuniform
deep local energy minima that are of stronger forms of hyper-
uniformity (measured by the class or larger a exponents)
relative to the equilibrium states at unit temperature. This
behavior is expected for pair potentials characterized by steep
short-range repulsions, since the local minima can be regarded
to be states with effectively low temperatures relative to the
initial higher-temperature fluid,111 and hence, the structure
factor S(k) of the quench at low wavenumbers reflects stronger
hyperuniformity. By contrast, the same reasoning leads to the
extended proposition that a quench of an initially nonhyperuni-
form fluid state with such interactions to deep local energy
minima have an S(0) that drops but generally not to zero, i.e., it
strictly remains nonhyperuniform, as shown for three well-
known models in Appendix C.

A promising avenue for future research is the determination
of thermodynamic and dynamic properties associated with the
effective potentials, including ground states, entropies, free
energies, phase diagrams,112,113 and their glass formations.
For instance, it has been shown that perfect glasses at T = 0
are remarkably zero-entropy states,94 in contradistinction to
normal glasses that are metastable with respect to crystals and
to disordered stealthy ground states that possess large extensive
entropies.25 On the other hand, the equivalent equilibrium system
for a perfect glass has positive entropy and an effective pair
potential [Fig. 1(c)] yields a crystalline ground state, as shown in
Appendix C. Furthermore, we note that the equivalent nonequili-
brium and equilibrium systems possess the same two-body con-
tribution to the excess entropy per particle due to their identical
pair statistics.83 However, this excess two-body entropy can be
significantly different from the real entropy even for simple
equilibrium liquids.114,115 Thus, it is a fascinating problem to
study their higher-order correlation contributions to the entropy,
which is expected to reveal crucial dynamical information.

Finally, we stress that the effective potentials yielding hyper-
uniform states at positive T could enable one to produce

Fig. 7 (a) A 1000-particle configuration of an inherent structure for the
effective potential for the 3D critical-absorbing state. (b) Pair correlation
function of the inherent structure with N = 1728. (c) Structure factor of the
inherent structure with N = 1728. (d) Log–log plot of the structure factor
for the inherent structure, showing the k2 scaling at small k.
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tunable hyperuniform materials. Due to the long-range nature
of these potentials (10), one can use r and T as tuning
parameters to generate equilibrium hyperuniform structures
whose exponents a are dictated by (10) or to generate stronger
hyperuniform forms via their inherent structures. While it is
challenging to achieve long-ranged interactions in the labora-
tory, one could experimentally reproduce the effective poten-
tials over some finite but large range of r to fabricate effectively
hyperuniform states, i.e., states with very small but nonvanishing
S(0). Subsequently, the deviation of such systems from perfect
hyperuniformity can be characterized via the various quantitative
measures described in ref. 43.
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Appendices

Appendix A. Precise numerical
algorithm to compute hole
probabilities for URLs

Here, we describe the standard method of computing the void-
exclusion probability or ‘‘hole’’ probability function EV(r) for a
many-body system. For systems with the bounded hole pro-
perty, sampling holes with radii close to rc is computationally
challenging. To precisely determine the behaviors of EV(r) and
GV(r) as r - rc

�, we introduce an improved algorithm to
compute EV(r) for URLs in all dimensions with any perturbation
strength b that is much more accurate than the standard
method. Although this improved method only applies to URLs,
we will see in Section 5.2 that the results for the hole prob-
abilities of this model confirm the general trend that holes
close to the critical-hole size are rarer in disordered systems
than in ordered systems.87 We first describe the algorithm
specific to the 3D cloaked URL (i.e., for d = 3 and b = 1), and
then generalize it to other d and b.

In the standard method, Nt test particles are randomly
placed in an N-particle configuration rN = {r1,. . .rN} under
periodic boundary conditions. For each test particle x, one
computes the distance dx from x to its nearest real particle ri.
The function EV(r) is estimated to be

EVðrÞ ¼
jfx:dx 4 rgj

Nt
: (22)

The result is then averaged over n configurations. Using nN =
5 � 107, Nt/N = 105, this method yields EV(r) for the target URL
in the range rr1/3 o 1.3 with errors o5%. However, computing
EV(r) at larger r requires sampling rare events with probabilities
smaller than 10�15, which is computationally challenging.87

Thus, we exploit the independence of the perturbed lattice
points to devise a more accurate method to compute EV(r).

As described in Section 3.3, the cloaked URL is obtained by
perturbing each lattice point in the SC lattice Z3 by a random
vector uniformly distributed on [�1/2,1/2)3. For i; j; k 2 Z, let
Cijk = [i� 1/2,i + 1/2)� [j� 1/2,j + 1/2)� [k� 1/2,k + 1/2), i.e., the
cubic region accessible to the perturbed lattice point originally
at (i,j,k). Let x be the position of a test particle and Bðx; rÞ be the
spherical region of radius r centered at x.

Since the lattice points are perturbed independently, the
probability p(x,r) that no perturbed lattice point is found in
Bðx; rÞ is given by the product of the probabilities that each
perturbed point is not in Bðx; rÞ, i.e.,

pðx; rÞ ¼
Y
ijk

CijknBðx; rÞ
�� ��; (23)

where CijknBðx; rÞ
�� �� is the volume of the set difference between

Cijk and Bðx; rÞ. Because the probability distribution of the
position of the test particle is uniform, we have

EVðrÞ ¼ hpðx; rÞix2R3 ¼
ð
C000

pðx; rÞdx; (24)

where the second equality follows from the fact that all Cijk are
equivalent in a URL. In what follows, we let x A C000.

If r �
ffiffiffi
3
p

; the region Bðx; rÞ covers C000, i.e., C000nBðx; rÞj j ¼
0 for any x A C000; It follows from eqn (23) and (24) that EV(r) = 0

for r �
ffiffiffi
3
p

. On the other hand, if 0 	 ro
ffiffiffi
3
p

; then p(x,r) a 0 for
x = (�1/2, �1/2, �1/2)T, and thus EV(r) is nonzero. Therefore,
the maximum hole radius in the 3D cloaked URL is given by

rc ¼
ffiffiffi
3
p

.
For r o rc, eqn (23) reduces to

pðx; rÞ ¼
Y

jij	2;jjj	2;jkj	2
CijknBðx; rÞ
�� ��: (25)

The factors in eqn (23) that are not included eqn (25) are equal
to unity because Bðx; rÞ are disjoint from their corresponding
Cijk. The 125 factors in eqn (25) can be evaluated via the Monte
Carlo integration technique.116 We randomly place Ns = 106

sample points in each Cijk region and estimate CijknBðx; rÞ
�� �� to

be the fraction of the number of sample points not found in
Bðx; rÞ. We compute p(x,r) at all x vectors on an M � M � M
regular mesh on C000, where M is a positive integer. The mesh is
chosen to be finer (i.e., M larger) with increasing r to ensure
that there are at least 1600 x vectors on the support of p(x,r).
Subsequently, we numerically evaluate EV(r) [eqn (24)] using a
Gaussian quadrature of order 3.116 This method yields errors of
EV(r) on the order of 2% for 1.6 r r o rc, whereas the errors
using the standard method are on the order of 100% in
this range. Note that the errors can be further reduced by
increasing Ns.

To generalize the algorithm to other d and b, one simply
replaces Cijk by Ci1,. . .,id

= [i1 � b/2,i1 + b/2) � � � � � [id � b/2,id + b/
2), which is the hypercubic region accessible to each perturbed

lattice point originally at ði1; . . . ; idÞ 2 Zd in the d-dimensional
hypercubic lattice. Eqn (24) and (23) will then be replaced by

EVðrÞ ¼ hpðx; rÞix2Rd ¼
ð
C0;...;0

pðx; rÞdx (26)
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and

pðx; rÞ ¼
Y

jim j	
ffiffi
d
p
þ1;m¼1;...;d

Ci1;...;idnBðx; rÞ
�� �� (27)

respectively.

Appendix B. Optimized effective
potentials for the target models

For the 2D perfect glass, the a = 1 behavior of S(k) at small k
implies that v(r;a) B 1/r as r -N. The fact that g2(r) = 0 for r r
0.88 implies that there is an effective hard core in this range.
The intermediate-r behavior of v(r;a) was determined by fitting
vHNC(r) in the range 0.88 o r r 4. No re-selection of the basis
function was needed. The optimized v(r) is given by

vðr; aÞ ¼

1 0 	 r 	 0:88

e1
r
þ e2 exp �

r

sð1Þ2

 !
cos

r

sð2Þ2

þ y2

 !

þe3 exp �
r

s3

� �8
 !

r4 0:88:

8>>>>>>>>><
>>>>>>>>>:

(28)

The optimized parameters are listed in Table 2. The L2-norm
error is E ¼ 0:077.

For the 3D critical-absorbing-state model, the fact that a =
0.25 implies that v(r;a) B 1/r2.75 at large r. Since the target
system is a packing of spheres with unit diameter, v(r;a) has a
hard core for r r 1. The intermediate-r behavior of v(r;a) was
obtained by fitting vHNC(r) in the range 1 o r r 4. No re-
selection of the basis function was needed. The optimized v(r)
is given by

vðr; aÞ ¼

1 0 	 r 	 1

e1
r2:75
þ e2 exp �

r

s2

� �5
 !

þ e3 exp �
r

s3

� �8
 !

þe4 exp �
r

s4

� �10
 !

r4 1:

8>>>>>>>>><
>>>>>>>>>:

(29)

The optimized parameters are listed in Table 3. The L2-norm
error is E ¼ 0:066.

The optimized potential for the 3D cloaked URL is given in
ref. 68.

Appendix C. Inherent structures and
ground states

Here, we present details on the energy levels of the inherent
structures for the hyperuniform models considered in this
study, including the 2D perfect glass, the 3D critical-absorbing
state and the 3D cloaked URL. We also consider inherent struc-
tures for several well-studied 3D models that yield nonhyperuni-
form states at positive T in three dimensions, including Lennard-
Jones (LJ), inverse power-law (PL) and Gaussian-core (GC)119

models. For all models, we ascertain the inherent structures using
the low-storage BFGS algorithm,95 starting from equilibrium
initial states away from phase transitions. The inherent-
structure energies per particle ĒIS are compared with the corres-
ponding ground-state energies Ē0.

To find the ground states for the hyperuniform models, we
first applied the simulated annealing algorithm120 on config-
urations with N Z 100 particles, starting from the equilibrium
liquid states that match the target pair statistics. The ground
state for the URL effective potential is found to be the SC lattice.
However, for the perfect glass and the critical-absorbing state,
we found that even with very slow cooling rates, the annealing
procedures resulted in disordered metastable states and were
unable to find the global minima.§ Therefore, we searched for
ground-state candidates by optimizing crystalline structures via
simulated annealing over n-particle bases, where n = 1, 2,. . .,10.
The parameters subject to optimization are unit cell vectors and
coordinates of the n � 1 particles in the interior of a unit cell.
We observe that v(r) for the perfect glass gives the same
optimized crystal structure for all even n, whose energy is below
the optimized energies for odd n, and that v(r) for the critical-
absorbing state yields identical optimized structures for all n.
Thus, it is highly likely that the ground state for the perfect-

Table 2 Optimized parameters of the effective pair potential for the 2D
perfect-glass model

e1 4.572 y2 1.032
e2 12.26 e3 5.803
s(1)

2 0.3921 s3 0.9766
s(2)

2 0.1505

Table 3 Optimized parameters of the effective pair potential for the 3D
critical-absorbing-state model

e1 0.3400 s3 1.582
e2 �0.8120 e4 �49.13
s2 0.9949 s4 0.8827
e3 0.1068

Fig. 8 Structures of the ground-state candidates associated with v(r) for
(a) the perfect glass and (b) the critical-absorbing state.

§ With cooling rate Ti+1 = 0.999Ti, where i is the iteration index, the annealing
procedures still result in metastable states for the hyperuniform models.
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glass potential is a two-particle basis, whereas that for the
critical-absorbing-state potential is a Bravais lattice. Fig. 8
shows the ground-state candidates for both models. The
ground-state candidate for the perfect glass contains zig-zag
chains of particles, whereas the one for the critical-absorbing
state contains planar sheets of triangle lattice.

The potentials for the nonhyperuniform models are given by

vLJ(r) = 4e[(r/s)�12 � (r/s)�6], (30)

vPL(r) = 4e[(r/s)�12], (31)

vGC(r) = e exp[�(r/s)2], (32)

where e and s are energy and distance scales, respectively. The
LJ and PL models are strongly repulsive at small r. While vGC(r)
is a soft interaction, the model possesses an effective hard core
at low temperatures.121,122 We compute the inherent structures
for eqn (30)–(32) starting from equilibrium configurations at
rs3 = 1, kT/e = 1. These r, T values are chosen so that the initial
states are dense liquids away from phase transitions for all
three potentials.117,118,122

Table 4 lists values of Ē0 and ĒIS for the hyperuniform and
nonhyperuniform models with N = 1000, as well as the small-
wavevector behaviors extracted using the diffusion spread-
ability.93 For all models except the URL, ĒIS values are narrowly
distributed above Ē0. The distributions are Gaussian and are
insensitive to the system size. For the perfect glass, ĒIS/Ē0 =
94%, and the standard deviation sIS of ĒIS is 5 � 10�4Ē0. For the
critical-absorbing state, ĒIS/Ē0 = 74% and sIS = 0.005Ē0. The
inherent structure for the URL is the SC lattice, identical to the
ground state. The fact that the structure is crystalline (periodic)
means that it is stealthy hyperuniform and hence a - N.22

Importantly, the three systems that are hyperuniform
at positive T yield hyperuniform inherent structures with
increased values of a are compared to those of the equilibrium
states at positive T, which is consistent with the proposition
that the quench reflects stronger forms of hyperuniformity, as
reported in Section 5.3 of the main article. In particular, a for
the URL potential dramatically increases from 2 at unit tem-
perature to infinity upon quenching. On the other hand, the
pair potentials for nonhyperuniform systems yield nonhyper-
uniform inherent structures. Note that while the inherent
structure for the GC model is nearly hyperuniform,22 it is not
perfectly hyperuniform, which again is consistent with the
proposition stated in the main article.
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