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Extraordinary disordered hyperuniform
multifunctional composites

Salvatore Torquato

Abstract
A variety of performance demands are being placed on material systems, including desirable mechanical, thermal, electrical,
optical, acoustic and flow properties. The purpose of the present article is to review the emerging field of disordered
hyperuniform composites and their novel multifunctional characteristics. Disordered hyperuniform media are exotic
amorphous states of matter that are characterized by an anomalous suppression of large-scale volume-fraction fluctuations
compared to those in “garden-variety” disordered materials. Such unusual composites can have advantages over their
periodic counterparts, such as unique or nearly optimal, direction-independent physical properties and robustness against
defects. It will be shown that disordered hyperuniform composites and porous media can be endowed with a broad
spectrum of extraordinary physical properties, including photonic, phononic, transport, chemical and mechanical char-
acteristics that are only beginning to be discovered.
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Introduction

Increasingly, a variety of performance demands are being
placed on material systems. In aerospace and space ap-
plications these requirements include lightweight compo-
nent structures that have desirable mechanical, thermal,
electrical, optical, acoustic and flow properties. Structural
components should be able to carry mechanical loads while
having other beneficial performance characteristics. De-
sirable thermal properties include high thermal conductivity
to dissipate heat and thermal expansion characteristics that
match the attached components. In the case of porous
cellular solids, heat dissipation can be improved by forced
convection through the material, but in these instances the
fluid permeability of the porous material must be large
enough to minimize power requirements for convection.
Desirable optical and acoustic properties include materials
that can control the propagation of light and sound waves
through them. It is difficult to find single homogeneous
materials that possess these multifunctional characteristics.

By contrast, composite materials are ideally suited to
achieve multifunctionality, since the best features of dif-
ferent materials can be combined to form a newmaterial that
has a broad spectrum of desired properties.1–5 These
materials may simultaneously perform as ultralight load-
bearing structures, enable thermal and/or electrical man-
agement, ameliorate crash or blast damage, and have

desirable optical and acoustic characteristics. A general goal
is the design of composite materials with N different
effective properties or responses, which we denote by
Kð1Þ
e ,Kð2Þ

e ,…,KðNÞ
e , given the individual properties of the

phases. In principle, one desires to know the region (set) in
the multidimensional space of effective properties in which
all composites must lie (see Figure 1 for a two-dimensional
(2D) illustration). The size and shape of this region depends
on the prescribed phase properties as well as how much mi-
crostructural information is specified, For example, the set of
composites with unspecified volume fractions is clearly larger
than the set in which the the volume fractions are specified.

The determination of the allowable region is generally a
highly complex problem. Cross-property bounds3,6–16 can
aid to identify the boundary of the allowable region and
numerical topology optimization methods17–21 can then be
used to find specific microstructures that lie on the
boundary, which are extremal solutions. These methods
often bias the solutions to be periodic structures with high
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crystallographic symmetries. As we will see below, it can be
very beneficial to constrain the optimal solution set to
microstructures possessing “correlated disorder”,22 which
can have advantages over periodic media, especially an
exotic type of disorder within the so-called hyperuniformity
class.23,24 The purpose of the present article is to review the
emerging field of disordered hyperuniform composites and
their novel multifunctional characteristics.

The hyperuniformity concept was introduced and
studied nearly two decades ago in the context of many-
particle systems.23 Hyperuniform systems are character-
ized by an anomalous suppression of large-scale density
fluctuations compared to “garden-variety” disordered
systems. The hyperuniformity concept generalizes the
traditional notion of long-range order in many-particle
systems to not only include all perfect crystals and

perfect quasicrystals, but also exotic amorphous states of
matter. Disordered hyperuniform materials can have ad-
vantages over crystalline ones, such as unique or nearly
optimal, direction-independent physical properties and
robustness against defects.16,22,25–42

The hyperuniformity concept was generalized to two-
phase heterogeneous media in d-dimensional Euclidean
space R

d ,24,43 which include composites, cellular solids
and porous media. A two-phase medium in R

d is hyper-
uniform if its local volume-fraction variance σ2V ðRÞ as-
sociated with a spherical observation window of radius R
decays in the large-R limit faster than the inverse of the
window volume, i.e., 1/Rd; (see Structural characterization
of disordered hyperuniform composites for mathematical
details). This behavior is to be contrasted with those of
“typical” disordered two-phase media for which the var-
iance decays like the inverse of the window volume (see
Figure 2).

In this article, we review progress that has been made to
generate and characterize multifunctional disordered two-
phase composites and porous media. In Structural charac-
terization of disordered hyperuniform composites, we
collect basic definitions and background on hyperuniform
and nonhyperuniform two-phase media. In Forward ap-
proaches to generating disordered hyperuniform two-phase
media and Inverse approaches to generating disordered
hyperuniform two-phase media, we review developments in
generating disordered hyperuniform two-phase media using
forward and inverse approaches, respectively. In Order
metrics for disordered hyperuniform two-phase media, we
describe order metrics that enable a rank ordering of dis-
ordered hyperuniform two-phase media. In Novel multi-
functional disordered hyperuniform composites and porous
media, we review the current knowledge about the ex-
traordinary multifunctional characteristics of disordered
hyperuniform composites and porous media. Finally, In
Conclusions and outlook, we make concluding remarks and

Figure 1. Schematic illustrating the allowable region in which all
composites with specified phase properties must lie for the case
of two different effective properties, Kð1Þ

e and Kð2Þ
e , as adapted

from Ref. 19. Importantly, this allowable region depends on the
type of microstructural information that is specified.

Figure 2. Schematics indicating a circular observation window of radius R in two dimensions and its centroid x0 for a “typical”
disordered nonhyperuniform (a), periodic (b), and disordered hyperuniform (c) media. In each of these examples, the phase volume
fraction within the window will fluctuate as the window position varies. Whereas the local variance σ2VðRÞ for the nonhyperuniform
medium decays like 1/R2 for large R, it decays like 1/R3 in both the periodic and disordered hyperuniform examples. In space dimension d
and for large R, σ2VðRÞ scales like 1/Rd and 1/Rd+1 for nonhyperuniform and hyperuniform media, respectively.
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discuss the outlook for the field.

Structural characterization of disordered
hyperuniform composites

For two-phase heterogeneous media in d-dimensional Eu-
clidean space R

d , hyperuniformity can be defined by the
following infinite-wavelength condition on the spectral
density ~χV ðkÞ,24,43 i.e.

lim
jkj→ 0

~χV ðkÞ ¼ 0 (1)

where k is the wavevector. The spectral density ~χV ðkÞ is the
Fourier transform of the autocovariance function
χV ðrÞ≡ SðiÞ2 ðrÞ � f2

i , where fi is the volume fraction of
phase i, and SðiÞ2 ðrÞ gives the probability of finding two
points separated by r in phase i at the same time.3 This two-
point descriptor in Fourier space can be easily obtained for
general microstructures either theoretically, computation-
ally, or via scattering experiments.44 The distinctions be-
tween the spectral densities for examples of 2D
hyperuniform and nonhyperuniform media can be vividly
seen in the top panel of Figure 3.

Hyperuniformity of two-phase media can be also defined
in terms of the local volume-fraction variance σ2V ðRÞ as-
sociated with a spherical window of radius R. Specifically, a
hyperuniform two-phase system is one in which σ2V ðRÞ
decays faster than R�d in the large-R regime,24,43 i.e.

lim
R→∞

Rdσ2V ðRÞ ¼ 0 (2)

In addition to having a direct-space representation,45 the
local variance σ2V ðRÞ has the following Fourier represen-
tation in terms of the spectral density ~χV ðkÞ:24,43

σ2V ðRÞ ¼
1

v1ðRÞð2πÞd
Z
R
d
~χV ðkÞ~α2ðk;RÞdk (3)

where v1(R) = πd/2Rd/Γ(d/2 + 1) is the volume of a
d-dimensional sphere of radius R, Γ(x) is the gamma
function

~α2ðk;RÞ≡ 2dπd=2Γ

�
d

2
þ 1

�
Jd=2ðkRÞ2

kd
(4)

is the Fourier transform of the scaled intersection volume of
two spheres of radius R whose centers are separated by a
distance r,23 and k ≡|k| is the wavenumber. The bottom
panel of Figure 3 depicts the local variances corresponding
to the spectral densities shown in the top panel.

As in the case of hyperuniform point configurations,23,43

there are three different scaling regimes (classes) that

describe the associated large-R behaviors of the volume-
fraction variance when the spectral density goes to zero with
the following power-law scaling:24,43,46

~χV ðkÞ∼ jkjα ðk→ 0Þ (5)

namely,

σ2
V ðRÞ∼

8>><
>>:

R�ðdþ1Þ, α > 1 ðClass IÞ
R�ðdþ1Þ lnR, α ¼ 1 ðClass IIÞ
R�ðdþαÞ, 0 < α < 1 ðClass IIIÞ

(6)

where the exponent α is a positive constant. Classes I and III
are the strongest and weakest forms of hyperuniformity,
respectively. Stealthy hyperuniformmedia are also of class I

Figure 3. (a) Spectral densities versus wavenumber k for 2D
nonhyperuniform and hyperuniform media (b) Corresponding
local variances (multiplied by R2) versus window radius R.

Torquato 3637



and are defined to be those that possess zero-scattering
intensity for a set of wavevectors around the origin,46 i.e.

~χV ðkÞ ¼ 0 for 0 ≤ jkj ≤K (7)

Examples of such media are periodic packings of spheres
as well as unusual disordered sphere packings derived from
stealthy point patterns.30,46

By contrast, for any nonhyperuniform two-phase system,
it is straightforward to show, using a similar analysis as for
point configurations,47 that the local variance has the fol-
lowing large-R scaling behaviors

σ2V ðRÞ∼
(
R�d , α ¼ 0 ðtypical nonhyperuniformÞ
R�ðdþαÞ, � d < α< 0 ðantihyperuniformÞ

(8)

For a “typical” nonhyperuniform system, ~χV ð0Þ is
bounded.24 In antihyperuniform systems, ~χV ð0Þ is un-
bounded, i.e.

lim
jkj→ 0

~χV ðkÞ ¼ þ∞ (9)

and hence are diametrically opposite to hyperuniform
systems. Antihyperuniform systems include systems at
thermal critical points (e.g. liquid-vapor and magnetic
critical points),48,49 fractals,50 disordered non-fractals,51

and certain substitution tilings.52

Forward approaches to generating
disordered hyperuniform two-phase media

Here we describe “forward” (direct) approaches that have
yielded disordered hyperuniform particulate media. Jam-
med as well as unjammed states are briefly reviewed.

Torquato and Stillinger23 suggested that certain defect-
free strictly jammed (i.e. mechanically stable) packings of

identical spheres are hyperuniform. Specifically, they
conjectured that any strictly jammed saturated infinite
packing of identical spheres is hyperuniform. A saturated
packing of hard spheres is one in which there is no space
available to add another sphere. This conjecture was con-
firmed by Donev et al.54 via a numerically generated
maximally random jammed (MRJ) packing55,56 of 106 hard
spheres in three dimensions. Subsequently, the hyperuniformity
of other MRJ hard-particle packings, including nonspherical
particle shapes, was established across dimensions.57–68

Jammed athermal soft-sphere models of granular
media,69,70 jammed thermal colloidal packings,71,72 and
jammed bidisperse emulsions73 were also shown to be
effectively hyperuniform. The singular transport and
electromagnetic properties of MRJ packings of spheres74

and superballs68 have also been investigated.
Periodically driven colloidal suspensions were observed

to have a phase transition in terms of the reversibility of the
dynamics one decade ago.75 Random organization models
capture the salient physics of how driven systems can self-
organize.76 A subsequent study of random organization
models of monodisperse (i.e. identical) spherical particles
have shown that a hyperuniform state is achievable when a
granular system goes through an absorbing phase transition
to a critical state.77 Many variants of such models and
systems have been studied numerically.78–82 To what extent
is hyperuniformity is preserved when the model is gener-
alized to particles with a size distribution and/or non-
spherical shapes? This question was probed in a recent
study53 by examining disks with a size distribution, needle-
like shapes and squares in two dimensions and it was
demonstrated that their critical states are hyperuniform as
two-phase media (see Figure 4). These results suggest that
general particle systems subject to random organization can
be a robust way to fabricate a wide class of hyperuniform
states of matter by tuning the structures via different
particle-size and -shape distributions. This tunability

Figure 4. Representative images of 2D hyperuniform absorbing-state particle configurations, as adapted from Ref. 53. (a) Disks with
continuous size distribution. (b) Identical needles. (c) Identical squares.
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capacity in turn potentially enables the creation of multi-
functional hyperuniform materials with desirable optical,
transport, and mechanical properties.

While there has been growing interest in disordered
hyperuniform materials states, an obstacle has been an
inability to produce large samples that are perfectly hy-
peruniform due to practical limitations of conventional
numerical and experimental methods. To overcome these
limitations, a general theoretical methodology has been
developed to construct perfectly hyperuniform packings in
d-dimensional Euclidean space R

d .83,84 Specifically, be-
ginning with an initial general tessellation of space by
disjoint cells that meets a “bounded-cell” condition, hard
particles are placed inside each cell such that the local-cell
particle packing fractions are identical to the global packing
fraction; see Figure 5. It was proved that the constructed
packings with a polydispersity in size in R

d are perfectly
hyperuniform of class I in the infinite-sample-size limit,
even though the initial point configuration that underlies the
Voronoi tessellation is nonhyperuniform. Implementing this
methodology in sphere tessellations of space (requiring
spheres down to the infinitessimally small), establishes the
hyperuniformity of the classical Hashin-Shtrikman multiscale
coated-spheres structures, which are known to be two-phase
media microstructures that possess optimal effective transport
and elastic properties.85,86 Figure 6 shows portions of 2D and
3D hyperuniform polydisperse packings that were converted
from the corresponding Voronoi tessellations of non-
hyperuniform random sequential addition (RSA) packings.87

These computationally-designed microstructures can be fab-
ricated via either photolithographic and 3D-printing
techniques.88–91

Inverse approaches to generating
disordered hyperuniform two-phase media

Here, we describe inverse optimization techniques that
enable one to design microstructures with targeted spectral
densities. These procedures include the capacity to tune the
value of the power-law exponent α > 0, defined by relation
(5), for nonstealthy hyperuniform media as well as to design
stealthy hyperuniform media, defined by relation (7).

The Yeong-Torquato stochastic optimization
procedure92,93 is a popular algorithm that has been em-
ployed to construct or reconstruct digitized multi-phase
media from a prescribed set of different correlation
functions in physical (direct) space.34,94–100 A fictitious
”energy” is defined to be a sum of squared differences
between the target and simulated correlation function.
The Yeong-Torquato procedure treats the construction or
reconstruction task as an energy-minimization problem
that it solves via simulated annealing. The Yeong-

Torquato procedure was generalized to construct disor-
dered hyperuniform materials with desirable effective
macroscopic properties but from targeted structural in-
formation in Fourier (reciprocal) space, namely, the
spectral density ~χV ðkÞ.35 Specifically, the fictitious “en-
ergy” E of the system in d-dimensional Euclidean space
R

d is defined as the following sum over wavevectors

E ¼
X
k

~χV ðkÞ
ld

� ~χV , 0ðkÞ
ld

� �2
(10)

where the sum is over discrete wave vectors k, ~χV , 0ðkÞ and
~χV ðkÞ are the spectral densities of the target and (re)
constructed microstructures, respectively, d is the space
dimension, and l is the relevant characteristic length of the
system used to scale the spectral densities such that they
are dimensionless. As in the standard Yeong-Torquato
procedure,92,93 the simulated-annealing method is used
to minimize the energy (10). It was demonstrated that one
can design nonstealthy hyperuniform media and stealthy
hyperuniform media with this Fourier-based inverse
technique.35 Such in-silico designed microstructures can be
readily realized by 3D printing and lithographic
technologies.89

Figure 7 shows designed realizations of digitized non-
stealthy hyperuniform media with prescribed values of the
power-law exponent α > 0, defined by relation (5), at dif-
ferent values of the phase volume fraction f.35 It is seen that
these designed materials possess a variety of morphologies:
as f increases for fixed α, the microstructures transition
from particulate media consisting of isolated “particles” to
labyrinth-like microstructures. Moreover, as α increases for
fixed f, short-range order increases in these hyperuniform
materials.

The “collective-coordinate” optimization procedure
represents a powerful reciprocal-space-based approach
to generate disordered stealthy hyperuniform point
configurations101–103 as well as nonstealthy hyperuniform point
configurations104,105 in d-dimensional Euclidean space Rd .
In the case of the former, their degree of the stealthiness can
be tuned by varying a dimensionless parameter χ, which
measures the relative number of independently constrained
degrees of freedom for wavenumbers up to the cut-off value
K. For the range 0 < χ < 1/2, the stealthy states are dis-
ordered, and degree of short-range order increases as χ ap-
proaches 1/2.106 Such stealthy point patterns can be decorated
by nonoverlapping spheres, enabling the generation of non-
digitized stealthy sphere packings, which have been used to
model disordered two-phase composites that are both stealthy
and hyperuniform,16,30 as defined by relation (7). As we will
see in Novel multifunctional disordered hyperuniform com-
posites and porous media, stealthy hyperuniform composites
are endowed with novel multifunctional characteristics.
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Figure 5. (a) A Voronoi tesselation of a nonhyperuniform disordered point configuration. (b) The disordered hyperuniform packing of
spheres with a size distribution that results by adding particles in the Voronoi tesselation while ensuring that the local cell packing
fraction is equal to global packing fraction. (c) A tessellation of space by spheres. (d) The Hashin-Shtrikman composite sphere assemblage
that results by adding particles in the sphere tessellation while ensuring that the local cell packing fraction is equal to global packing
fraction. These images are adapted from those in Ref. 83.

Figure 6. (a) A portion of a hyperuniform disk packing that was converted from a 2D RSA packing with the packing fraction
finit = 0.41,025. (b) A portion of a hyperuniform sphere packing that was converted from a 3D saturated RSA packing with the
packing fraction finit = 0.288. This figure is adapted from Ref. 83.
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Order metrics for disordered
hyperuniform two-phase media

An outstanding open problem is the determination of ap-
propriate “order metrics” to characterize the degree of large-
scale order of both hyperuniform and nonhyperuniform
media. This task is a highly challenging due to the infinite
variety of possible two-phase microstructures (geometries
and topologies). To begin such a program, the local variance
σ2V ðRÞ was recently studied for a certain subset of class I
hyperuniformmedia, including 2D periodic cellular networks
as well as 2D periodic and disordered/irregular packings,
some of which maximize their effective transport and elastic
properties.107 In particular, Kim and Torquato107 evaluated
the local variance σ2V ðRÞ as a function of the window radius
R. They also computed the hyperuniformity order metric BV ,
i.e., the implied coefficient multiplying R�(d+1) in (6), for all
of these class I 2D models to rank them according to their
degree of order at a fixed volume fraction. The smaller is the
value of BV , the more ordered is the microstructure with
respect to large-scale volume-fraction fluctuations. Among
the cellular networks considered, the honeycomb networks

have theminimal values of the hyperuniformity ordermetricsBV

across all volume fractions. Among all structures studied there,
triangular-lattice packings of circular disks have the minimal
values of the order metric for almost all volume fractions.

It is desired to formulate order metrics to characterize the
degree of order/disorder of the microstructures of two-
phase media in d-dimensional Euclidean space R

d across
length scales. It has recently been proposed that the local
volume-fraction variance σ2V ðRÞ be used as an order metric
for disordered and ordered two-phase media across all
length scales by tracking it as a function of R.108 The local
variance σ2V ðRÞ as a function of R was determined for
22 different models across the first three space dimensions,
including both hyperuniform and nonhyperuniform systems
with varying degrees of short- and long-range order. It was
found that the local volume-fraction variance as well as the
asymptotic coefficients and integral measures derived from it
provide reasonably robust and sensitive order metrics to
categorize disordered and ordered two-phase media across all
length scales. Such order metrics could be employed to
accelerate the discovery of novel heterogeneous materials by
tailoring their degree of order/disorder.

Figure 7. Realizations of disordered hyperuniform two-phase materials for different values of the volume fraction f and the positive
exponent α, defined by the spectral-density scaling law (5). This figure is adapted from Ref. 35.
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Novel multifunctional disordered
hyperuniform composites and porousmedia

By mapping relatively large 2D disordered stealthy hy-
peruniform point configurations, obtained via the collective-
coordinate optimization procedure,101,102 to certain 2D
trivalent dielectric networks via a Delaunay centroidal
tessellation,25 what was thought to be impossible at the time
became possible. Specifically, the first disordered network
solids to have large complete (both polarizations and
blocking all directions) photonic band gaps comparable in
size to those in photonic crystals were identified, but with
the additional advantage of perfect isotropy.25 The com-
putational designs consist of trivalent networks of cell walls
with circular cylinders at the nodes. The band structure was
computed as a function of the degree of stealthiness χ (left
panel of Figure 8) and the case of χ nearly equal to 0.5
(with an accompanying substantial degree of short-range
order) leads to the maximal complete band-gap size in

disordered hyperuniform dielectric networks. This numer-
ical investigation enabled the design and fabrication of
disordered cellular solids with the predicted photonic band-
gap characteristics for the microwave regime (right panel
of Figure 8), enabling unprecedented free-form wave-
guide geometries unhindered by crystallinity and anisot-
ropy, and robust to defects.109,110 Subsequently, stealthy
hyperuniform materials were shown to have novel electro-
magnetic and elastic wave propagation characteristics, in-
cluding transparency to long-wavelength radiation,16,28,33,111,112

tunable diffusive and localization regimes,33 enhanced
absorption of waves,113 and singular phononic band
gaps.32,39,114

The effective thermal or electrical conductivities and
elastic moduli of various 2D ordered and disordered hy-
peruniform cellular networks were studied.115 The multi-
functionality of a class of such low-density networks was
established by demonstrating that they maximize or virtu-
ally maximize the effective conductivities and elastic

Figure 8. (a) Band structure for stealthy hyperuniform networks as a function of χ, as predicted from the computational study in Ref. 25.
From left to right, χ = 0.1, 0.2, 0.3, 0.4 and 0.5. The relative band-gap size, measured by Δω/ωC takes on the largest value of 10.26% for
the rightmost case of χ = 0.5. (b) 3D fabrication of the computationally-designed maximal band-gap structure looking down from the top,
as adapted from Ref. 110. The solid phase is aluminum oxide.

Figure 9. (a) 2D disordered hyperuniform trivalent network, as adapted from Ref. 115. (b) 3D disordered hyperuniform tetrahedrally-
coordinated network, as adapted from Ref. 116.
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moduli. This was accomplished by using the machinery
of homogenization theory, including optimal bounds and
cross-property bounds, and statistical mechanics. It was
rigorously proved that anisotropic networks consisting of
sets of intersecting parallel channels in the low-density
limit, ordered or disordered, possess optimal effective
conductivity tensors. For a variety of different disordered
networks, it was shown that when short-range and long-
range order increases, there is an increase in both the
effective conductivity and elastic moduli of the network.
Moreover, it was demonstrated that the effective con-
ductivity and elastic moduli of various disordered net-
works (derived from disordered “stealthy” hyperuniform
point patterns), such as the one shown in the left panel of
Figure 9), possess virtually optimal values. Interestingly,
the optimal networks for conductivity are also optimal for
the fluid permeability associated with slow viscous flow
through the channels as well as the mean survival time
associated with diffusion-controlled reactions in the
channels. 3D disordered hyperuniform networks, such as
the one shown in right panel of Figure 9, have been shown
to have sizable photonic band gaps.116 In summary, 2D
and 3D disordered hyperuniform low-weight cellular
networks are multifunctional with respect to transport
(e.g. heat dissipation and fluid transport), mechanical and
electromagnetic properties, which can be readily fabri-
cated using 2D lithographic and 3D printing
technologies.88–91

The theoretical problem of estimating the effective
properties of multiphase composite media is an outstanding
one and dates back to work by some of the luminaries of
science, including Maxwell,117 Lord Rayleigh,118 and
Einstein.119 The preponderance of previous theoretical
studies have focused on the determination of static effective
properties (e.g. dielectric constant, elastic moduli and fluid
permeability) using a variety of methods, including approxi-
mation schemes,117,120–122 bounding techniques,3,4,85,123–125

and exact series-expansion procedures.126–129 Much less is
known about the theoretical prediction of the effective dy-
namic dielectric constant tensor εe(kI), where kI is wavevector
of the incident radiation. The strong-contrast formalism has
recently been used to derive exact nonlocal expansions for
εe(kI) that exactly account for complete microstructural
information and hence multiple scattering to all orders for the
range of wavenumbers for which our extended homogeni-
zation theory applies, i.e., 0 ≤ |kI|l( 1 (wherel is a
characteristic heterogeneity length scale).112 Due to the fast-
convergence properties of such expansions, their lower-order
truncations yield accurate closed-form approximate formulas
for εe(kI) that depend on the spectral density ~χV ðkÞ. It was
shown that disordered stealthy hyperuniform particulate
composites exhibit novel wave characteristics, including the
capacity to act as low-pass filters that transmit waves “iso-
tropically” up to a selected wavenumber or refractive indices

that abruptly change over a narrow range of wavenumbers.
The aforementioned nonlocal formulas can now be used to
accelerate the discovery of novel electromagnetic composites
by appropriate tailoring of the spectral densities.

Cross-property relations for two-phase composite media
were recently obtained that link effective elastic and elec-
tromagnetic wave characteristics to one another, including
effective wave speeds and attenuation coefficients.16 This
was achieved by deriving accurate formulas for the effective
elastodynamic properties111 as well as effective electro-
magnetic properties,112 each of which depend on the mi-
crostructure via the spectral density. Such formulas enable
one to explore the wave characteristics of a broad class of
disordered microstructures, including exotic disordered
hyperuniform varieties. It was specifically demonstrated
that disordered stealthy hyperuniform/nonhyperuniform
microstructures exhibit novel elastic wave characteristics
that have the potential for future applications, e.g. narrow-
band or narrow-band-pass filters that absorb or transmit
elastic waves isotropically for a narrow spectrum of fre-
quencies, respectively. These cross-property relations for
effective electromagnetic and elastic wave characteristics
can be applied to design multifunctional composites
(Figure 10), such as exterior components of spacecrafts or
building materials that require both excellent stiffness and
electromagnetic absorption, and heat-sinks for CPUs that
have to efficiently emit thermal radiation and suppress
mechanical vibrations, and nondestructive evaluation of the
mechanical strength of materials from the effective di-
electric response.

The effective transport characteristics of fluid-saturated
porous media have been studied using certain rigorous
microstructure-property relations.130 Of particular interest
were the predictions of the formation factor F , mean
survival time τ, principal nuclear magnetic resonance
(NMR) (diffusion) relaxation time T1, principal viscous
relaxation time Θ1, and fluid permeability k for hyper-
uniform and nonhyperuniform models of porous media.
Among other results, a Fourier representation of a classic
rigorous upper bound on the fluid permeability was derived
that depends on the spectral density ~χV ðkÞ to infer how the
permeabilities of hyperuniform porous media perform
relative to those of nonhyperuniform ones; see Figure 11. It
was found that the velocity fields in nonhyperuniform
porous media are generally much more localized over the
pore space compared to those in their hyperuniform
counterparts, which has certain implications for their
permeabilities. Rigorous bounds on the transport proper-
ties F , τ, T1 and Θ1 suggest a new approximate formula for
the fluid permeability that provides reasonably accurate
permeability predictions of a certain class of hyperuniform
and nonhyperuniform porous media. These comparative
studies shed new light on the microstructural character-
istics, such as pore-size statistics, in determining the
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transport properties of general porous media. In a more
recent study, the second moment of the pore-size proba-
bility density function was shown to be correlated with the
critical pore radius, which contains crucial connectivity
information about the pore space.131 All of these findings
have important implications for the design of porous
materials with desirable transport properties.

A new dynamic probe of the microstructure of two-phase
media has been introduced called the spreadability SðtÞ,
which is a measure of the spreadability of diffusion in-
formation as a function of time t in any Euclidean space
dimension d.132 It is assumed that a solute at t = 0 is
uniformly distributed throughout phase 2 with volume
fraction f2, and completely absent from phase 1 with
volume fraction f1, and each phase has same diffusion
coefficient D. The spreadability is the fraction of the total
amount of solute present that has diffused into phase 1 at
time t. In particular, a three-dimensional formula due to
Prager133 was generalized to any dimension in direct space
and its Fourier representation was derived. The latter is an

Figure 10. Schematics illustrating elastic and electromagnetic waves at two different wavenumbers (a) kI and (b) kII incident to, inside of
and transmitted from a two-phase heterogeneous material (a large ellipse) consisting of a matrix phase (shown in yellow) and a
dispersed phase (shown in cyan). Parallel lines and sinusoidal curves represent elastic and electromagnetic waves, respectively. (a) For an
elastic wave with a wavenumber kI, while the wavefronts inside this material experience microscopic disturbances, they effectively behave
like a plane wave inside a homogeneous material with an effective wavenumber ðkeÞI and effective elastic moduli Ke and Ge. Analogously,
for an electromagnetic wave, this material behaves like a homogeneous material with an effective dielectric constant ϵe. For instance,
both elastic and electromagnetic waves are attenuated due to scattering if this composite has a non-zero scattering intensity at kI. (b) For
waves (red) of a wavenumber kII, this composite can be effectively transparent, if it has a zero-scattering intensity at kII. This figure is
adapted from Ref. 16.

Figure 11. Images of the void space after applying a “dilation” operation to three different sphere packings, as adapted from Ref. 130. (a)
A nonhyperuniform equilibrium packing. (b) A hyperuniform maximally random jammed packing. (c) A disordered stealthy packing.

Figure 12. Excess spreadabilities versus dimensionless time Dt/a2

for antihyperuniform media (top curve), Debye random media
(middle curve), and disordered hyperuniform media (bottom
curve) for d = 3 and f2 = 0.5, as adapted from Ref. 132. The long-
time inverse power-law scalings of Sð∞Þ � SðtÞ for each of
these models is indicated. Here a is a characteristic length scale
for each model, as defined in Ref. 132.
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exact integral relation for the spreadability SðtÞ that depends
only on the spectral density ~χV ðkÞ:

Sð∞Þ � SðtÞ ¼ 1

ð2πÞdf2

Z
R
d
~χV ðkÞexp

��k2Dt
�
dk ≥ 0 (11)

where Sð∞Þ ¼ f1. Importantly, the short-, intermediate-
and long-time behaviors of SðtÞ contain crucial small-,
intermediate- and large-scale structural characteristics. For
hyperuniform media, it was shown that the “excess”
spreadability, Sð∞Þ � SðtÞ, decays to its long-time behavior
exponentially faster than that of any nonhyperuniform
medium, the “slowest” being antihyperuniform media, as
illustrated in Figure 12. It was also shown that there is a
remarkable link between the spreadability and NMR pulsed
field gradient spin-echo amplitude and diffusion MRI.132

Elsewhere, this new theoretical/experimental tool was ap-
plied to characterize many different models and a porous-
medium sample.68,134

Conclusions and outlook

We have seen that the exotic hybrid crystal-liquid structural
attributes of disordered hyperuniform composites can be
endowed with an array of extraordinary physical properties,
including photonic, phononic, transport and mechanical
characteristics that are only beginning to be discovered.
Disordered hyperuniform media can have advantages over
their periodic counterparts, such as unique or nearly opti-
mal, direction-independent physical properties and ro-
bustness against defects. The field of hyperuniformity is still
in its infancy, though, and a deeper fundamental under-
standing of these unusual states of matter is required in order
to realize their full potential for next-generation materials.
Future challenges include the further development of for-
ward and inverse computational approaches to generate
disordered hyperuniform structures, formulation of im-
proved order metrics to rank order them, and identifying
their desirable multifunctional characteristics. These com-
putational designs can subsequently be combined with the
2D lithographic fabrication techniques91 and 3D additive
manufacturing techniques88–90 to accelerate the discovery
of novel multifunctional hyperuniform two-phase materials.

Cross-property “maps” have recently been introduced to
connect combinations of pairs of effective static transport
and elastic properties of general particulate media via an-
alytical structure-property formulas.135 Cross-property
maps and their extensions will facilitate the rational de-
sign of composites with different desirable multifunctional
characteristics. In future work, it would be valuable to
formulate cross-property maps for the various physical
properties described in Novel multifunctional disordered
hyperuniform composites and porous media using the
corresponding analytical estimates of these properties in

order to aid in the multifunctional design of disordered
hyperuniform composites.

To complement rigorous approaches to estimate the
macroscopic properties of heterogeneous media from the
microstructure, data-driven methodologies to establish
structure-property relationships are increasingly being
employed.99,136–138 The rapid increase in computational
resources facilitates the calculation of effective properties
for very large data sets (thousands or more) of different
microstructures, including those obtained experimentally
via 2D and 3D high-resolution imaging techniques.3,139–142

As a result, it has become manageable to generate large
numbers of realistic virtual microstructures, and using those
to perform exploratory computational screening of structure–
property relationships. The application of machine-learning
and other data-driven approaches for the discovery of
multifunctional disordered hyperuniform composites has
yet to be undertaken and hence is a promising avenue for
future research.
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98. Čapek P. On the importance of simulated annealing algo-
rithms for stochastic reconstruction constrained by low-
order microstructural descriptors. Trans Porous Media
2018; 121: 59–80.

99. Li X, Zhang Y, Zhao H, et al. A transfer learning approach
for microstructure reconstruction and structure-property
predictions. Sci Rep 2018; 8: 13461.

100. Skolnick M and Torquato S. Understanding degeneracy of
two-point correlation functions via debye random media.
Phys Rev E 2021; 104: 045306.

101. Uche OU, Stillinger FH, Torquato S, et al. Constraints on
collective density variables: two dimensions. Phys Rev E
2004; 70: 046122.

102. Batten RD, Stillinger FH, Torquato S, et al. Classical dis-
ordered ground states: super-ideal gases, and stealth and
equi-luminous materials. J Appl Phys 2008; 104: 033504.

103. Zhang G, Stillinger F, Torquato S, et al. Ground states of
stealthy hyperuniform potentials: I. Entropically favored
configurations. Phys Rev E 2015; 92: 022119.

104. Uche OU, Torquato S, Stillinger FH, et al. Collective co-
ordinates control of density distributions. Phys Rev E 2006;
74: 031104.

105. Zhang G, Stillinger FH, Torquato S, et al. The perfect glass
paradigm: disordered hyperuniform glasses down to abso-
lute zero. Sci Rep 2016; 6: 36963.

106. Torquato S, Zhang G, Stillinger FH, et al. Ensemble theory
for stealthy hyperuniform disordered ground states. Phys
Rev X 2015; 5: 021020.

107. Kim J and Torquato S. Characterizing the hyperuniformity
of ordered and disordered two-phase media. Phys Rev E
2021; 103: 012123.

108. Torquato S, Skolnick M and Kim J. Local order metrics for
two-phase media across length scales. J Phys A: Math Theor
2022; 55: 274003.

3648 Journal of Composite Materials 56(23)



109. Florescu M, Steinhardt PJ, Torquato S, et al. Optical cavities
and waveguides in hyperuniform disordered photonic solids.
Phys Rev B 2013; 87: 165116.

110. Man W, Florescu M, Williamson EP, et al. Isotropic band gaps
and freeform waveguides observed in hyperuniform disordered
photonic solids. Proc Nat Acad Sci 2013; 110: 15886–15891.

111. Kim J and Torquato S. Effective elastic wave characteristics
of composite media. New J Phys 2020; 22: 123050.

112. Torquato S and Kim J. Nonlocal effective electromagnetic
wave characteristics of composite media: beyond the qua-
sistatic regime. Phys Rev X 2021; 11: 021002.

113. Bigourdan F, Pierrat R, Carminati R, et al. Enhanced ab-
sorption of waves in stealth hyperuniform disordered media.
Opt Express 2019; 27: 8666–8682.

114. Romero-Garcı́a V, Lamothe N, Theocharis G, et al. Stealth
acoustic materials. Phys Rev Appl 2019; 11: 054076.

115. Torquato S and Chen D. Multifunctional hyperuniform
cellular networks: optimality, anisotropy and disorder.
Multifunc Mater 2018; 1: 015001.

116. Klatt MA, Steinhardt PJ, Torquato S, et al. Gap sensitivity
reveals universal behaviors in optimized photonic crystal
and disordered networks. Phys Rev Lett 2021; 127: 037401.

117. Maxwell JC. Treatise on electricity and magnetism. Oxford:
Clarendon Press, 1873.

118. Strutt JW. On the influence of obstacles arranged in a
rectangular order upon the properties of medium. Phil Mag
1892; 34: 481–502.

119. Einstein A. Eine neue bestimmung der Moleküldimensio-
nen. Ann Phys 1906; 19: 289–306.

120. Bruggeman D. Berechnung verschiedener Physikalischer
Konstanten von heterogenen Substanzen. Ann Physik 1935;
24: 636–679.

121. Brinkman HC. A calculation of the viscous force exerted by
a flowing fluid on a dense swarm of particles. Appl Sci Res
1947; A1: 27–34.

122. Budiansky B. On the elastic moduli of some heterogeneous
materials. J Mech Phys Sol 1965; 13: 223–227.

123. Prager S. Viscous flow through porous media. Phys Fluids
1961; 4: 1477–1482.

124. Beran M. Use of the variational approach to determine
bounds for the effective permittivity in random media.
Nuovo Cimento 1965; 38: 771–782.

125. Kohn RV and Lipton R. Optimal bounds for the effective
energy of a mixture of isotropic, incompressible elastic
materials. Arch R Mech Anal 1988; 102: 331–350.

126. BrownWF. Solid mixture permittivities. J Chem Phys 1955;
23: 1514–1517.

127. Felderhof BU, Ford GW, Cohen EGD, et al. Cluster ex-
pansion for the dielectric constant of a polarizable sus-
pension. J Stat Phys 1982; 28: 135–164.

128. Sen AK and Torquato S. Effective conductivity of anisotropic
two-phase composite media. Phys Rev B 1989; 39: 4504–4515.

129. Torquato S. Exact expression for the effective elastic tensor
of disordered composites. Phys Rev Lett 1997; 79: 681–684.

130. Torquato S. Predicting transport characteristics of hyper-
uniform porous media via rigorous microstructure-property
relations. Adv Water Resour 2020; 140: 103565.

131. Klatt MA, Ziff RM, Torquato S, et al. Critical pore radius
and transport properties of disordered hard-and overlapping-
sphere models. Phys Rev E 2021; 104: 014127.

132. Torquato S. Diffusion spreadability as a probe of the mi-
crostructure of complex media across length scales. Phys
Rev E 2021; 104: 054102.

133. Prager S. Diffusion and viscous flow in concentrated sus-
pensions. Physica 1963; 29: 129–139.

134. Wang H and Torquato S. Dynamic measure of hyperuniformity
and nonhyperuniformity in heterogeneous media via the dif-
fusion spreadability. Phys Rev Appl 2022; 17: 034022.

135. Torquato S and Chen D. Multifunctionality of particulate
composites via cross-property maps. Phys Rev Mater 2018;
2(9): 095603.

136. van der Linden JH, Narsilio GA, Tordesillas A, et al. Ma-
chine learning framework for analysis of transport through
complex networks in porous, granular media: a focus on
permeability. Phys Rev E 2016; 94: 022904.

137. Neumann M, Stenzel O, Willot F, et al. Quantifying the
influence of microstructure on effective conductivity and
permeability: virtual materials testing. Int J Sol Struct 2020;
184: 211–220.
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