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Abstract
The capacity to devise order metrics to characterize and classify microstruc-
tures of multiphase heterogeneous media across length scales is an outstand-
ing but highly challenging task, given the richness of the possible geometries
and topologies of the phases that can arise. This investigation initiates a pro-
gram to formulate order metrics to characterize the degree of order/disorder
of the microstructures of two-phase media in d-dimensional Euclidean space
Rd across length scales. In particular, we propose the use of the local volume-
fraction variance σ2

V (R) associated with a spherical window of radius R as an
order metric. We determine σ2

V (R) as a function of R for 22 different models
across the first three space dimensions, including both hyperuniform and non-
hyperuniform systems with varying degrees of short- and long-range order. We
find that the local volume-fraction variance as well as asymptotic coefficients
and integral measures derived from it provide reasonably robust and sensitive
order metrics to categorize disordered and ordered two-phase media across all
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length scales. Such order metrics could be employed to accelerate the discovery
of novel heterogeneous materials by tailoring their degree of order/disorder.

Keywords: length scales, order metrics, two-phase media, hyperuniformity
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1. Introduction

Heterogeneous multiphase media and materials abound in nature and synthetic situations.
Examples of such materials include composites, porous media, foams, cellular solids, col-
loidal suspensions, granular media, polymer blends, geological media, and biological media
[1–5]. It is known that the effective transport, mechanical and electromagnetic properties of
heterogeneous media depend in a nontrivial manner on the microstructures and phase con-
stituents [2, 4, 6, 7]. Given the multitude of possible microstructures of varying geometries
and topologies, it is highly desirable to devise scalar order metrics to characterize the degree
of order/disorder of the microstructures. While the study of scalar order metrics to character-
ize the degree of order/disorder of point configurations has been a fruitful endeavor [8], it is
much more challenging to devise such order metrics to describe the microstructures of multi-
phase media for two reasons. First, the geometries and topologies of the phases are generally
much richer and more complex than those of point-configuration arrangements. Second, one
must determine characteristic microscopic length scales that are broadly applicable for the
plethora of possible microstructures. The capacity to identify useful order metrics for multi-
phase media could accelerate materials discovery. For example, if sensitive order metrics can
be established, one can then formulate experimental or numerical protocols that generate multi-
phase microstructures with prescribed order metrics and desirable physical properties [9]. This
process could be accelerated via machine learning [10–12] by incorporating order metrics to
score microstructure data sets.

This paper initiates a program to formulate order metrics to characterize the degree of
order/disorder of the microstructures of two-phase media in d-dimensional Euclidean space
Rd across length scales. In particular, we propose the use of various measures of volume-
fraction fluctuations within a d-dimensional spherical window of radius R as order metrics.
Such fluctuations are known to be of importance in a variety of problems, including the study
of noise and granularity of photographic images [13, 14], transport through composites and
porous media [15], the properties of organic coatings [16], the fracture of composite materials
[17], and the scattering of waves in heterogeneous media [18–20].

For concreteness, we focus on two-phase media in Rd in this work, but we note that the
generalization of our results to n-phase media is straightforward. The global volume fractions
of phases 1 and 2 are denoted by φ1 and φ2, respectively, where φ1 + φ2 = 1. At a local level,
the phase volume fraction fluctuates. The simplest measure of volume-fraction fluctuations is
the local volume-fraction variance σ2

V
(R) (see figure 1), which can be expressed in terms of the

autocovariance function χV(r) [21, 22] (defined in section 2):

σ2
V (R) =

1
v1(R)

∫

Rd
χV(r)α2(r; R)dr, (1)

where

v1(R) =
πd/2Rd

Γ(d/2 + 1)
(2)
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Figure 1. Schematics indicating a circular observation window of radius R in two
dimensions, and its centroid x0 for three different two-phase microstructures: (a) a gen-
eral disordered nonhyperuniform medium; (b) a disordered hyperuniform medium; and
(c) an ordered (periodic) medium. Reprinted from [24], Copyright (2018), with per-
mission from Elsevier. In each of these examples, the phase volume fraction within a
window fluctuates as the window centroid varies. While the local variance σ2

V(R) for the
nonhyperuniform medium decays like 1/R2, it decays like 1/R3 in both the disordered
hyperuniform and periodic examples.

is the volume of a d-dimensional sphere of radius R, Γ(x) is the gamma function andα2(r; R) is
the intersection volume of two spherical windows of radius R separated by a distance r divided
by the volume of a window. The quantityα2(r; R) is known analytically in any space dimension
[23]. Note that σ2

V (R = 0) = φ1φ2 [21], which can be proved to be an upper bound on the local
variance, i.e., σ2

V (R) ! φ1φ2 for all R. In addition to the direct-space representation (1), the
local variance σ2

V
(R) has the following Fourier-space representation in terms of the spectral

density χ̃V(k) [22, 24]:

σ2
V (R) =

1
v1(R) (2π)d

∫

Rd
χ̃V(k) α̃2(k; R) dk, (3)

where k is the wavevector, k ≡ |k| is the wavenumber,

α̃2(k; R) ≡ 2dπd/2 Γ
(
d/2 + 1

) [Jd/2(kR)]2

kd (4)

is the Fourier transform of α2(r; R) [25], and Jν(x) is the Bessel function of the first kind of
order ν (see section 4.10 for plots of α̃2(k; R) for d = 1, 2, and 3). The spectral density χ̃V(k)
is the Fourier transform of the autocovariance function χV(r) and is directly related to the
scattering intensity [26].

The large-R behavior of σ2
V (R) is at the heart of the hyperuniformity concept. Hyperuniform

two-phase media are characterized by an anomalous suppression of volume-fraction fluctu-
ations relative to garden-variety disordered media [22, 24] and can be endowed with novel
properties [9, 19, 24, 27–41]. Specifically, a hyperuniform two-phase system is one in which
σ2

V
(R) decays faster than R−d in the large-R regime [22, 24], i.e.,

lim
R→∞

Rd σ2
V(R) = 0. (5)

Equivalently, a hyperuniform medium is one in which the spectral density χ̃V(k) goes to zero
as |k| tends to zero [22, 24], i.e.,
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lim
|k|→0

χ̃V(k) = 0. (6)

The hyperuniformity concept has led to a unified means to classify equilibrium and nonequi-
librium states of matter, whether hyperuniform or not, according to their large-scale fluctuation
characteristics. Suppose the spectral density has the following power-law behavior as |k| tends
to zero:

χ̃V (k) ∼ |k|α (|k| → 0), (7)

where α is an exponent that specifies whether the medium is hyperuniform or not. In the case
of hyperuniform two-phase media, α > 0, and it has been shown [22, 24] that there are three
different scaling regimes (classes) that describe the associated large-R behaviors of the volume-
fraction variance

σ2
V (R) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R−(d+1), α > 1 (Class I)

R−(d+1) ln R, α = 1 (Class II)

R−(d+α), 0 < α < 1 (Class III).

(8)

Classes I and III are the strongest and weakest forms of hyperuniformity, respectively. Class I
media include all crystal structures, many quasicrystal structures and exotic disordered media
[22, 24, 42]. Such scalings are due to the fact that the autocovariance function χV(r) decays
like |r|−(d+α) in the large-r regime for hyperuniform media. For class II and III systems, this
rate of decay is slow enough to affect the scaling of the variance. However, for class I systems,
the decay rate |r|−(d+α) is fast enough for the variance to be independent of α [24].

By contrast, for any nonhyperuniform two-phase system, it is straightforward to show, using
a similar analysis as for point configurations [43], that the local variance has the following
large-R scaling behaviors:

σ2
V (R) ∼

{
R−d, α = 0 (typical nonhyperuniform)

R−(d+α), −d < α < 0 (antihyperuniform).
(9)

For a ‘typical’ nonhyperuniform system, χ̃V(0) is bounded [24]. For antihyperuniform media,
χ̃V(0) is unbounded, i.e.,

lim
|k|→0

χ̃V (k) = +∞, (10)

and hence are diametrically opposite to hyperuniform systems. Antihyperuniform media
include systems at thermal critical points (e.g., liquid-vapor and magnetic critical points)
[44, 45], fractals [46], disordered non-fractals [47], and certain substitution tilings [48].

In this paper, we propose the use of the local volume-fraction variance σ2
V (R) as an order

metric for disordered and ordered two-phase media across all length scales by tracking it as a
function of R. Specifically, for any particular value of R, the lower (higher) the volume-fraction
fluctuations as measured by σ2

V(R), the greater the degree of order (disorder). We study this
order metric and integral measures derived from it across length scales for 22 different mod-
els across the first three space dimensions, including both hyperuniform and nonhyperuniform
systems with varying degrees of short- and long-range order. Examination of the same model
across dimensions enables us to study the effect of dimensionality on the ranking of order
across dimensions. For almost all one-dimensional (1D) models and some two-dimensional
(2D) and three-dimensional (3D) models, we obtain exact closed-form formulas for their pair
statistics and local variances. We find that the local volume-fraction fluctuations, as measured
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by the magnitude of σ2
V (R) for a particular value of the window radius R, provide a reasonably

robust way to rank order different two-phase media at a common global volume fraction. We
also calculate the implied coefficients multiplying the large-R scaling of the variance for class
I hyperuniform media [cf (8)] and that of typical nonhyperuniform media [cf (9)]. The calcu-
lation of such large-R asymptotic coefficients was only recently carried out, but primarily for
certain 2D ordered structures [49].

In section 2, we present necessary definitions and background material. In section 3, we
derive a useful Fourier-space representation of a large-R asymptotic coefficient that we employ
in subsequent sections. Brief descriptions of the two-phase models across the first three space
dimensions and their corresponding relevant structural characteristics are given in section 4.
In section 5, we present the local variance as well as integral measures derived from it as order
metrics. In section 6, we present the major results for the local variance for all of the models.
Finally, we make concluding remarks in section 7.

2. Definitions and background

2.1. Correlation functions

A two-phase medium is fully statistically characterized by the n-point correlation functions
[2], defined by

S(i)
n (x 1, . . . , x n) ≡

〈
I (i)(x 1) . . .I (i)(x n)

〉
, (11)

where I (i)(x ) is the indicator function for phase i = 1, 2, defined as

I (i)(x ) ≡
{

1, x in phase i

0, otherwise,
(12)

where n = 1, 2, 3, ..., [50] and angular brackets denote an ensemble average. The function
S(i)

n (x 1, . . . , x n) also has a probabilistic interpretation, namely, it is the probability that the n
positions x 1, . . . , x n all lie in phase i. For statistically homogeneous media, S(i)

n (x 1, . . . , x n) is
translationally invariant and hence depends only on the relative displacements of the points.

The autocovariance functionχV (r), which is directly related to the two-point function S(i)
2 (r)

and plays a central role in this paper, is defined by

χV (r) ≡ S(1)
2 (r) − φ2

1 = S(2)
2 (r) − φ2

2, (13)

where r ≡ x 2 − x 1. Here, we have assumed statistical homogeneity. The equality in (13)
comes from the fact that for two-phase media, I (1)(x ) = 1 − I (2)(x ). At the extreme limits of its
argument,χV (r) has the following asymptotic behavior:χV (r = 0) = φ1φ2 and lim

|r|→∞
χV (r) = 0

if the medium possesses no long-range order. If the medium is statistically homogeneous and
isotropic, then the autocovariance function χV(r) depends only on the magnitude of its argu-
ment r = |r|, and hence is a radial function. In such instances, its slope at the origin is directly
related to the specific surface s, which is the interface area per unit volume. In particular, the
well-known 3D asymptotic result [26] is easily obtained in any space dimension d:

χV (r) = φ1φ2 − κ(d)s |r| + O(|r|2), (14)

where

κ(d) =
Γ(d/2)

2
√
πΓ((d + 1)/2)

. (15)
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The nonnegative spectral density χ̃V(k), which can be obtained from scattering experiments
[26, 51], is the Fourier transform of a well-defined integrable autocovariance function χV(r)
[52, 53] at wavevector k, i.e.,

χ̃V (k) =

∫

Rd
χV(r)e−ik·rdr " 0, for all k. (16)

For a general statistically homogeneous two-phase medium, the spectral density must obey the
following sum rule [15]:

1
(2π)d

∫

Rd
χ̃V (k) dk = χV (r = 0) = φ1φ2. (17)

For statistically isotropic media, the spectral density only depends on the wavenumber k = |k|
and, as a consequence of (14), its decay in the large-k limit is controlled by the exact following
power-law form:

χ̃V (k) ∼ γ(d) s
kd+1 , k →∞, (18)

where

γ(d) = 2d π(d−1)/2 Γ((d + 1)/2). (19)

In the case of a packing of identical particles (nonoverlapping particles) P of volume v1(P)
at number density ρ, the spectral density χ̃V(k) is directly related to the structure factor S(k)
of the particle centroids [2, 24, 42]:

χ̃V (k) = φ2
|m̃(k; P)|2

v1(P)
S(k), (20)

where m̃(k; P), called the form factor, is the Fourier transform of the particle indicator function
so that m̃(0; P) = v1(P), and

φ2 = ρv1(P) (21)

is the packing fraction, i.e., the fraction of space covered by the identical nonoverlapping par-
ticles. For example, in the case of identical d-dimensional spheres of radius a, the form factor
is given by

m̃(k; a) =

(
2πa

k

)d/2

Jd/2(ka). (22)

For any such sphere packing, the specific surface s is given by

s =
φ2 d

a
. (23)

Stealthy hyperuniform media are a subclass of hyperuniform media that belong to class I.
They are defined to possess zero-scattering intensity for a set of wavevectors around the origin
[42], i.e.,

χ̃V (k) = 0 for 0 ! |k| ! K. (24)

Examples of such media are periodic packings of spheres, unusual disordered sphere pack-
ings derived from stealthy point patterns, as well as specially designed stealthy hyperuniform
dispersions [42, 54, 55].
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2.2. Large-R asymptotic analysis of the variance

For a large class of statistically homogeneous two-phase media in Rd, the large-R asymptotic
expansion of the local volume-fraction variance σ2

V(R) is given by [22]:

σ2
V(R) = ĀV

(
D
R

)d

+ B̄V

(
D
R

)d+1

+ o
(

D
R

)d+1

, (25)

where ĀV and B̄V are dimensionless asymptotic coefficients of powers R−d and R−(d+1),
respectively, given by

ĀV =
1

v1(D)

∫

Rd
χV(r) dr =

χ̃V (k = 0)
v1(D)

, (26)

B̄V = − c(d)
2Dv1(D)

∫

Rd
χV(r) |r|dr, (27)

where c (d) ≡ 2Γ
(
1 + d/2

)
/[π1/2Γ

(
(d + 1)/2

)
]D is a characteristic microscopic length scale

of the medium, and o
(
D/R

)d+1 represents terms of order higher than
(
D/R

)d+1. For typical
nonhyperuniform media, ĀV is positive [cf (9)]. When ĀV = 0, B̄V must be positive, imply-
ing that the medium is hyperuniform of class I [cf (8)]. It is noteworthy that, unlike σ2

V(R),
the coefficient B̄V depends on the choice of the length scale D. Appendix A provides a more
general asymptotic expansion of the local volume-fraction variance. Finally, we note that for
any packing of identical particles, formulas (20) and (26) yield the leading-order asymptotic
coefficient to be generally given by

ĀV = φ2S(0), (28)

which was first derived in reference [22].

3. Fourier-space representation of the asymptotic coefficient B̄V

Here we derive a Fourier-space representation of the asymptotic coefficient B̄V for any homoge-
neous two-phase system, whether hyperuniform or not, provided that the spectral density meets
certain mild conditions. This representation will be especially useful when the scattering inten-
sity is available experimentally or if the spectral density is known analytically. Specifically, the
coefficient B̄V can be expressed as follows:

B̄V =
Γ(1 + d/2)d
π(d+2)/2Dd+1

∫ ∞

0

χ̃V(k) − χ̃V (0)
k2 dk, (29)

where χ̃V (0) ≡ lim|k|→0 χ̃V(k). This Fourier representation of the coefficient B̄V is the analog
of the one derived for point configurations [43]. Thus, this Fourier-space representation of the
coefficient B̄V is bounded provided that the difference [χ̃V (k) − χ̃V(0)] tends to zero in the limit
k → 0 faster than linear in k. This condition will always be met by any spectral density that is
analytic at the origin, since [χ̃V (k) − χ̃V(0)] must vanish at least as fast as quadratically in k
as k → 0. In this paper, we will often use formula (29) to determine B̄V , either analytically or
numerically.

To prove the formula (29), we begin by using the identity [25]

1
(2π)d

∫

Rd
α̃2(k; R)dk = 1, (30)

7
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in relation (3) to yield

σ2
V (R) =

χ̃V(0)
v1(R)

+
1

v1(R)(2π)d

∫

Rd
[χ̃V (k) − χ̃V (0)]α̃2(k; R)dk. (31)

Since α̃2(k; R) is a radial function, depending only on the magnitude of the wavevector, we can
carry out the angular integration in the integral in (31), yielding

σ2
V (R) =

χ̃V(0)
v1(R)

+
d

Rd(2π)d

∫ ∞

0
kd−1[χ̃V(k) − χ̃V (0)]α̃2(k; R)dk, (32)

where the radial function χ̃V(k) is given by

χ̃V (k) =
1
Ω

∫

Ω
χ̃V (k)dΩ, (33)

where dΩ is the differential solid angle and Ω = dπd/2

Γ(1+d/2) is the total solid angle contained in
a d-dimensional sphere. For large R,

α̃2(k; R) ∼ 2d+1πd/2−1Γ(1 + d/2)
cos2

[
kR − d+1

4

]

Rkd+1 . (34)

Combination of (32) and (34) yields the following large-R asymptotic expansion:

σ2
V (R) ∼ χ̃V(0)

v1(R)
+

2Γ(1 + d/2) d
Rd+1π(d+2)/2

×
∫ ∞

0

[χ̃V(k) − χ̃V (0)]
k2 cos2

[
kR − d + 1

4

]
dk + O

(
1

Rd+3

)
. (35)

Using the identity

lim
L→∞

1
L

∫ L

0
cos2

[
kR − d + 1

4

]
dR =

1
2

(36)

and (35), we obtain

σ2
V (R) ∼ χ̃V(0)

v1(R)
+

Γ(1 + d/2) d
Rd+1π(d+2)/2

∫ ∞

0

[χ̃V (k) − χ̃V(0)]
k2 dk + O

(
1

Rd+3

)
. (37)

Comparing (37) to (25) yields the desired Fourier-space representation of the surface-area coef-
ficient B̄V given by (29). Finally, we observe that if the coefficient B̄V is identically zero, relation
(29) leads to the integral condition

∫ ∞

0

χ̃V (k) − χ̃V (0)
k2 dk = 0, (38)

which is the analog of the Fourier-space sum rule for hyposurficial point configurations [25].

8
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4. Two-phase media models

4.1. Antihyperuniform media

We consider the following autocovariance function corresponding to a model of antihyperuni-
form media in three dimensions devised by Torquato [47]:

χV (r)
φ1φ2

=
1

1 + 2(r/a) + (r/a)2 , (39)

whose specific surface is given by

s =
8φ1φ2

a
. (40)

This monotonic functional form meets all of the known necessary realizability conditions on
a valid autocovariance function [42]. The corresponding spectral density is given by

χ̃V(k) =
4πa2

ka
{Ci(ka)[ka cos(ka) + sin(ka)] + Ssi(ka) [ka sin(ka) − cos(ka)}, (41)

where Ci(x) ≡
∫ x

0 dt cos(t)/t is the cosine integral, Ssi(x) ≡ Si(x) − π/2 is the shifted sine
integral and Si(x) ≡

∫ x
0 dt sin(t)/t is the sine integral. We see that χ̃V(k) ∼ 2π2/k in the limit

k → 0, which is consistent with the power-law decay 1/r2 of χV (r) in the limit r →∞.

4.2. Debye random media

Debye et al [26] hypothesized that the following autocovariance function characterizes
isotropic random media in which the phases form domains of ‘random shape and size’:

χV (r) = φ1φ2 exp(−r/a), (42)

where a is a characteristic length scale. The Taylor expansion of (42) about r = 0 and com-
parison to (14) reveals that the specific surface s of a Debye random medium in any space
dimension is given by

s =
φ1 φ2

κ(d) a
. (43)

The spectral density for Debye random media in any space dimension is given by [15]

χ̃V (k) =
φ1φ2 cd ad

[1 + (ka)2](d+1)/2 , (44)

where cd = 2dπ(d−1)/2Γ((d + 1)/2).

4.3. Overlapping spheres

The model of overlapping spheres or fully-penetrable-sphere model refers to an uncorrelated
(Poisson) distribution of spheres of radius a throughout a matrix [2]. For such nonhyperuniform
models at number density in d-dimensional Euclidean space Rd , the autocovariance function
is known analytically [2]:

χV(r) = exp(−ρv2(r; a)) − φ1
2, (45)

9
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where φ1 = exp(−ρv1 (a)) is the volume fraction of the matrix phase (phase 1), v1(a) is given
by (2), and v2(r; a) represents the union volume of two spheres whose centers are separated by
a distance r. In two and three dimensions, the latter is explicitly given respectively by

v2(r; a)
v1(a)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2Θ (x − 1) + (1 + x)Θ (1 − x) , d = 1

2Θ (x − 1) +
2
π

[
π + x(1 − x2)1/2 − cos−1 (x)

]
Θ (1 − x) , d = 2

2Θ (x − 1) +

(
1 +

3x
2

− x3

2

)
Θ (1 − x) , d = 3,

(46)

where x ≡ r/2a, and Θ(x) (equal to 1 for and zero otherwise) is the Heaviside step function.
The specific surface s in any space dimension is given by [2]

s =
ηφ1 d

a
, (47)

where η ≡ ρv1(a). For d = 1, the spectral density can be expressed in the following closed-
form:

χ̃V (k) =
2φ1η

k((2ak)2 + η2)
[2ak(1 − φ1 cos(2ak)) + φ1η sin(2ak)] . (48)

4.4. Random checkerboard

The random checkerboard in d dimensions is generated by tessellating space into identi-
cal hypercubic cells of side length a and randomly designating a cell as phase 1 or 2 with
probability φ1 or φ2, respectively. The angular-averaged autocovariance takes the form [2]

χV (r) = W(r)φ1φ2, (49)

where W(r) is a radial function with support in the interval [0,
√

d a]. For example, for d = 1,

W(r) = (1 − x)Θ(1 − x),

and for d = 2,

W(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 +
x2 − 4x

π
, 0 ! x ! 1

1 − 2 + x2

π
+

4
π

[
(x2 − 1)1/2 − cos−1 (1/x

)]
, 1 ! x !

√
2

0, x "
√

2,

(50)

where x = r/a. The explicit expression for W(r) for d = 3 is given in reference [2]. The specific
surface s in any space dimension is given by [2]

s =
2d φ1φ2

a
. (51)

For d = 1, the spectral density can be expressed in the following closed-form:

χ̃V (k) = φ1φ2a
sin2(ka/2)

(ka/2)2 . (52)

10
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4.5. Equilibrium packings

We also examine equilibrium (Gibbs) ensembles of identical hard spheres of radius a at pack-
ing fraction φ2 [8, 56]. In particular, we consider such disordered packings along the stable
disordered fluid branch in the phase diagram [2, 8]. All such states are nonhyperuniform. In
the case of 1D equilibrium hard rods, pair statistics are known exactly [57]. In particular, using
the exact solution of the direct correlation function [57, 58] and the Ornstein–Zernike integral
equation, we can express the exact structure factor as

S(k) =

[
1 − 2φ2 {φ2 [cos(2ak) − 1] + 2ak sin(2ak)(φ2 − 1)}

(1 − φ2)2(2ak)2

]−1

.

For d = 3, we utilize the Percus–Yevick approximation of the structure factor S(k) [56]:

S (k) =

(
1 − ρ

16πa3

q6

{[
24a1φ2 − 12(a1 + 2a2)φ2q2+ (12a2φ2 + 2a1 + a2φ2)q4] cos(q)

+
[
24a1φ2q − 2(a1 + 2a1φ2 + 12a2φ2)q3] sin(q)− 24φ2(a1 − a2q2)

})−1
,

where q = 2ka, a1 = (1 + 2φ2)2/(1 − φ2)4, and a2 = −(1 + φ2/2)2/(1 − φ2)4. Using these
solutions for the structure factor in conjunction with (20) yields the corresponding spectral
density χ̃V (k). For d = 2, there is no closed-form approximation for the structure, and so we
obtain the spectral density from disk packings generated by the Monte Carlo method [2].

4.6. Disordered hyperuniform media

We also consider models of hyperuniform two-phase media in Rd formulated by Torquato
[42, 59] in which the autocovariance function takes the following form:

χV (r)
φ1φ2

= c e−r/a cos(qr + θ), (54)

where the parameters q and θ are the wavenumber and phase associated with the oscillations
of χV (r), respectively, a is a correlation length, and c is a normalization constant to be cho-
sen so that the right-hand side of (54) is unity for r = 0. For d = 1, the phase is given by
θ = tan−1

(
1/(qa)

)
, implying that the normalization constant is c = [1 + (qa)2]1/2/(qa). For

concreteness, we set qa = 1, and hence c =
√

2 and θ = π/4. Taking the Fourier transform of
(54) with these parameters yields the spectral density to be given by

χ̃V (k)
φ1φ2

=
4 (ka)2 a
(ka)4 + 4

. (55)

In higher dimensions, one can take θ = 0 and c = 1. The corresponding spectral densities for
d = 2 with (qa)2 = 1 and d = 3 with (qa)2 = 1/3 are respectively given by

χ̃V (k)
φ1φ2

=
2π(ka)2[A(k) + B(k)] + 4π[A(k) − B(k)] a2

[(ka)4 + 4][A2(k) + B2(k)]
, (56)

and

χ̃V (k)
φ1φ2

=
216π [3(ka)2 + 8](ka)2 a3

81(ka)8 + 216(ka)6 + 432(ka)4 + 384(ka)2 + 256
, (57)

11
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where

A(k) =

√
(ka)2/2 +

√
(ka)4 + 4/2, B(k) = A−1(k). (58)

Note that the specific surface s for this system in any dimension d is given by

s =
2
√
πcφ1φ2Γ

[
(1 + d)/2

]
[cos(θ) + qa sin(θ)]

aΓ[d/2]
. (59)

4.7. Stealthy hyperuniform media

We also study ‘stealthy’ hyperuniform two-phase media, which obey the general functional
form given by (24), where K is the exclusion sphere radius in Fourier (reciprocal) space.
One can create stealthy packings of identical spheres by decorating stealthy point configu-
rations, generated via the so-called collective-coordinate optimization technique [60, 61], by
spheres of radius a such that spheres cannot overlap [62]. Here we utilize a modification of
this algorithm by incorporating an additional soft-core repulsive interaction between the points
to further increase the nearest-neighbor distance so that even higher packing fractions can be
achieved by a decoration of the points by nonoverlapping spheres [19, 38]. Disordered stealthy
point configurations generated by this optimization procedure are actually classical ground
states of systems of particles interacting with bounded long-ranged pair potentials. The corre-
sponding spectral densities in this work are obtained from the numerically generated stealthy
packings.

4.8. Periodic media

We consider nonoverlapping particles P on the sites of any Bravais lattice L in Rd in which
a single particle P is placed in a fundamental cell F of L. One can immediately obtain from
(20) the specific formulas for the corresponding spectral density as follows:

χ̃V (k) = VF
−1|m̃ (k; P) |2 SL (k) , (60)

where VF is the volume of F , SL (k) is the structure factor of L given by [24]

SL (k) =
(2π)d

VF

∑

q∈L∗\{0}

δ (k − q) , (61)

where L∗ denotes the reciprocal lattice of L, and δ (x) is the Dirac delta function. Specifically,
for d = 1, we consider rods of phase 2 placed on the sites of the integer lattice, whose specific
surface is given by (23). For d = 2, we consider both circular disks and oriented hexagons
of side length a placed on the sites of the triangular lattice, whose specific surfaces are given
by (23) and s = 4φ2/(

√
3a), respectively [49]. The form factor m̃ (k; P) for the hexagon is

obtained using the analysis presented in reference [49]. For d = 3, we consider spheres on the
sites of both the simple cubic (SC) and body-centered cubic (BCC) lattices, whose specific
surfaces are given by (23).

4.9. Representative microstructure images

To get a visual sense of the breadth of microstructures considered in this paper that span from
nonhyperuniform to hyperuniform two-phase media and their corresponding degree of order,
we depict representative images of small portions of the microstructures of each of the eight

12
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Figure 2. Representative images of each of the eight 2D two-phase models at
φ2 = 0.4: (a) Debye random media; (b) overlapping circular disks; (c) random checker-
board; (d) equilibrium hard disks; (e) disordered hyperuniform; (f) stealthy hyperuni-
form disks; (g) hexagons on the triangular lattice; (h) circular disks on the triangular
lattice. Here, the white regions represent phase 1 and the blue regions represent phase 2.

2D two-phase models at φ2 = 0.4 in figure 2. It is expected that Debye random media will
be the most disordered at all length scales because they are characterized by phase domains
of random shapes with a wide range of sizes, including a substantial fraction of large ‘holes’
[15, 63, 64]. We will see that this expectation is indeed the case in section 6, as well as the fact
that circular disks on the triangular lattice are the most ordered.

4.10. Results for the spectral densities

The spectral densities for 1D, 2D and 3D models are depicted in figures 3–5, respectively.
According to formula (3) for the local variance σ2

V (R), the behavior of the spectral density
for small to intermediate wavenumbers determines the magnitude of the local variance for
intermediate to large length scales. In particular, the smaller (larger) are the values of χ̃V (k)
for such wavenumbers, the smaller (larger) are the values of σ2

V (R) for intermediate to large
length scales. More precisely, we see from formula (3) that it is the product of the spectral
density with function α̃2(k; R) [cf (4)] that determines the behavior of σ2

V (R). We see from the
plots of α̃2(k; R) for the first three space dimensions shown in figure 6 that the function (4)
places increasingly heavier weight on the small wavenumber region of the spectral density in
integral (3) as the dimension increases. Thus, qualitative changes in the spectral densities for
the same models across dimensions have implications for how their relative order ranking may
or may not change across dimensions. For example, while the dimensionless spectral density
for the 1D random checkerboard is substantially smaller than that for equilibrium hard rods for
a range of wavenumbers near the origin (figure 3), these behaviors for their 2D counterparts
are reversed (figure 3), which, in turn, should reverse their relative rankings, which we will see
is indeed the case in section 6. Across dimensions, periodic media are characterized by Bragg
peaks (Dirac delta functions) whose strengths are proportional to the form factor [cf (20)]. In

13
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Figure 3. Comparison of the dimensionless spectral densities χ̃V (k)s/(φ1φ2) versus the
dimensionless wavenumber k/(2πs) for 1D models at φ2 = 0.5, where s is the specific
surface.

Figure 4. Comparison of the dimensionless spectral densities χ̃V (k)s2/(φ1φ2) versus the
dimensionless wavenumber k/(2πs) for 2D models at, where s is the specific surface. In
the case of periodic media, the angular-averaged spectral density is presented.

the 2D and 3D periodic cases, the structures with the largest first Bragg peak (i.e., triangular
lattice of circles in 2D and BCC lattice of spheres in 3D) should yield the least fluctuations
in those dimensions, which again is verified in section 6. For the same reasons, the stealthy
hyperuniform packings in 2D and 3D should yield the most ordered microstructures among all
disordered models.
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Figure 5. Comparison of the dimensionless spectral densities χ̃V (k)s3/(φ1φ2) versus the
dimensionless wavenumber k/(2πs) for 3D models at φ2 = 0.38, where s is the specific
surface. In the case of periodic media, the angular-averaged spectral density is presented.

Figure 6. Plots of the Fourier transform of the scaled intersection volume of two spheri-
cal windows (4) normalized by Rd, α̃2(k; R)/Rd, as a function of dimensionless wavevec-
tor kR for dimensions one, two, and three. Reprinted from [24], Copyright (2018), with
permission from Elsevier.

5. Local variance as an order metric across length scales

We propose the use of the local volume-fraction variance σ2
V (R) at window radius R as an

order metric for disordered and ordered two-phase media across length scales by tracking it
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as a function of R. Specifically, for any particular value of R, the lower the value of σ2
V(R), the

greater the degree of order.
To extract an integrated measure of local volume-fraction fluctuations for window radii from

zero to some length scale L, we consider the following 1D integral over σ2
V (R):

ΣV (L) =

∫ L

0
σ2

V (R)dR. (62)

Whenever the integral ΣV (L) converges, i.e., is bounded, in the limit L →∞, we consider

ΣV (∞) ≡
∫ ∞

0
σ2

V (R)dR. (63)

This integral has the following convenient closed-form representation in terms of the angular-
averaged spectral density defined by (33):

ΣV (∞) =
Γ(1 + d/2)Γ(d/2) d

2πd/2Γ(d + 1/2)Γ((d + 1)/2)

∫ ∞

0
kd−2χ̃V (k)dk. (64)

To prove relation (64), we substitute formula (3) into (63) to yield

ΣV (∞) =
1

(2π)d

∫

Rd
χ̃V(k)dk

∫ ∞

0

α̃2(k; R)
v1(R)

dR (65)

=
d

(2π)d

∫ ∞

0
kd−1χ̃V (k)dk

∫ ∞

0

α̃2(k; R)
Rd dR (66)

=
Γ(1 + d/2) d

πd/2

∫ ∞

0
kd−2χ̃V(k)dk

∫ ∞

0

J2
d/2(kR)

(kR)d dR. (67)

Using the identity
∫ ∞

0

Jd/2(x)2

xd dx =
Γ
(
d/2

)

2Γ
(
d + 1/2

)
Γ
(
(d + 1)/2

) (68)

in (67) yields (64).
For the first three dimensions, equation (64) gives

ΣV (∞) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2

∫ ∞

0

χ̃V (k)
k

dk, d = 1

8
3π2

∫ ∞

0
χ̃V (k)dk, d = 2

3
10π

∫ ∞

0
kχ̃V (k)dk, d = 3.

(69)

Referring to the scaling relations (7) and (8), we see that for d = 1, the integral ΣV (∞) con-
verges only for hyperuniform media that belong to class I or II. By contrast, it does not
converge for d = 1 for class III hyperuniform media or nonhyperuniform media. For typi-
cal nonhyperuniform media and hyperuniform media, ΣV (∞) converges for any d ≥ 2. For
antihyperuniform media, ΣV (∞) is nonconvergent if α lies between −d and 2 − d, implying
that it is always nonconvergent for d = 1 and d = 2, but for d = 3, it is nonconvergent only
if α lies in the open interval (−3,−1). For d = 3, ΣV (∞) is convergent for antihyperuniform
media if α lies in the open interval (−1, 0). Whenever ΣV (∞) does not converge, we utilize
the rate of growth of the integral (62) with L as the order metric.
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6. Results

In the ensuing description, we present results for the local variance (as obtained from either
(1) or (3)) and its corresponding integral for the 1D, 2D and 3D models discussed in section 4.
However, in order to compare different models in any particular space dimension, we fix both
the volume fraction φ1 and specific surface s. The latter implies that the characteristic micro-
scopic length scale D is set equal to the inverse of the specific surface, i.e., D = s−1. The
justification for the use of the specific surface as a simple means to fix length scales for different
media was provided by Kim and Torquato [49].

6.1. 1D models

In what follows, we obtain exact closed-form formulas for σ2
V (R) and ΣV (L) for five of the six

1D models considered in this work, except in the case of equilibrium hard rods, which requires
numerical quadrature. For a particular model, we express formulas in terms of the characteristic
microscopic length scales defined in section 4.

For 1D Debye random media, the local variance is given by

σ2
V (R) = φ1φ2

( a
R

)
+

φ1φ2[1 − exp(−2R/a)]
2

( a
R

)2
. (70)

The large-R asymptotic coefficients in distance units a are given by

ĀV = φ1φ2, B̄V = −φ1φ2

2
. (71)

The integral of the variance from R = 0 to R = L is given by

ΣV(L) =
aφ1φ2

2

[
2(γ − 1) +

a
(
1 − exp(−2L/a)

)

L
− 2Ei

(
−2L

a

)
+ ln(4) + 2 ln

(
L
a

)]
,

(72)

where γ = 0.577 216 . . . is the Euler–Mascheroni constant, and Ei(x) = −
∫∞
−x e−tdt/t is the

exponential integral.
For the 1D random checkerboard, the local variance is given by

σ2
V (R) =

⎧
⎪⎪⎨

⎪⎪⎩

φ1φ2

[
1 − 2

3

(
R
a

)]
, R ! a/2

φ1φ2

[
1
2

( a
R

)
− 1

12

( a
R

)2
]

, R " a/2.
(73)

The large-R asymptotic coefficients in distance units a are given by

ĀV =
φ1φ2

2
, B̄V = −φ1φ2

12
. (74)

The integral of the variance from R = 0 to R = L is given by

ΣV (L) =
−φ1φ2

12aL

[
4L2(L − 3a) −Θ

(
L − a

2

)

×
(

a3 − 12aL2 + 4L3 + a2 L
(

3 + ln(64) + 6 ln
(

L
a

)))]
. (75)
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For 1D overlapping rods, the local variance is given by

σ2
V (R) =

⎧
⎪⎪⎨

⎪⎪⎩

−φ2
1 +

2φ1

η

( a
R

)
+

2φ1(φR/a
1 − 1)
η2

( a
R

)2
, R ! a

2φ1

(
φ2

η
− φ1

)( a
R

)
+ φ1

(
φ1 +

2
η

(
φ1 −

φ2

η

))( a
R

)2
, R " a.

(76)

The large-R asymptotic coefficients in distance units a are given by

ĀV = 2φ1

(
φ2

η
− φ1

)
, B̄V = φ1

(
φ1 +

2
η

(
φ1 −

φ2

η

))
. (77)

The integral of the variance from R = 0 to R = L is given by

ΣV (L) = a f (φ1) + ag(φ1)
(a − L)

L
+ ah(φ1) ln

(a
L

)
, (78)

where

f (φ1) = −φ2
1 +

2φ1 ln(η)
η

− 2φ1Ei(−η)
η

+
2(γ − 1)φ1

η
+

2φ1

η2 − 2φ2
1

η2 , (79)

g(φ1) =
φ1 [2φ2 − φ1(2 + η)η]

η2 , (80)

h(φ1) =
2φ1(φ1η − φ2)

η
. (81)

For 1D equilibrium hard rods, the leading order large-R asymptotic coefficient is given
exactly by

ĀV = φ2(1 − φ2)2, (82)

which is obtained from (28) and the fact that S(0) = (1 − φ2)2 [43]. The large-R asymptotic
coefficient B̄V and integral ΣV (L) are computed numerically. However, using the exact low-φ2

asymptotic expansion of B̄V (which is easily obtained) and the condition that B̄V must vanish
at φ2 = 1, a fit of the numerical data using a polynomial of degree six (without up to quadratic
terms) yields the highly accurate approximation formula in distance units a for B̄V for all φ2,
namely,

B̄V =
−φ2

6

(
2 − 7φ2 + 8φ2

2 − 3φ3
2

)
. (83)

For 1D disordered hyperuniform media, the local variance is given by

σ2
V (R) =

φ1φ2a2

4R2 {1 − [sin(2R/a) + cos(2R/a)] exp(−2R/a)}. (84)

The large-R asymptotic coefficients in distance units a are given by

ĀV = 0, B̄V =
φ1φ2

4
. (85)
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The integral of the variance over all R is given by

ΣV (∞) =
aπφ1φ2

4
. (86)

We consider 1D periodic rods of length 2a = φ2b arranged on the sites of the integer lattice
Z, where b is the lattice spacing. The local variance was determined analytically in reference
[65], but here we present slightly more compact formulas. Specifically, we write the local
variance for this periodic medium as follows:

σ2
V

(R) =
1
4

(
G − G2 − F

3

)(
F
R

)2

, (87)

where

F =

{
min{{2R}, 2a}, 2a ! 1 − {2R}

min{1 − {2R}, 1 − 2a}, 2a " 1 − {2R},
(88)

G =

{
max{{2R}, 2a}, 2a ! 1 − {2R}

max{1 − {2R}, 1 − 2a}, 2a " 1 − {2R},
(89)

and {x}denotes the fractional part of x.
From relation (87), we can ascertain that the large-R asymptotic coefficients in distance

units a are given by

ĀV = 0, B̄V =
φ2

1

6
. (90)

We also find that the integral of the variance over all R is given by the following infinite sum:

ΣV (∞) =
a

π2φ2

∞∑

n=1

sin2(nπφ2)
n3 ! a ζ(3)

π2φ2
, (91)

where ζ(x) is the Riemann zeta function. The upper bound on ΣV (∞) immediately follows by
setting the numerator in (91) to its maximal value of unity. The quantityΣV (∞) is a function of
φ2 that is symmetric about φ2 = 1/2, where it is achieves its maximal value, and equal to zero
at the extreme values of φ2, i.e., φ2 = 0 and φ2 = 1. It is noteworthy that when φ2 is a rational
number such that sin2(πφ2) is a rational number, the infinite sum can be exactly represented
entirely in terms of ζ(3) = 1.202 056 903 . . .. Specifically, when φ2 equals 1/2, 1/3, 1/4,
and 1/6, ΣV (∞) equals 7ζ(3)/(8π2), 13ζ(3)/(18π2), 35ζ(3)/(64π2), ζ(3)/(3π2), respectively.
Whenever sin2(πφ2) is irrational, the infinite sum must be approximated by a finite sum, but
the resulting value is highly accurate because (91) converges rapidly.

Table 1 lists closed-form formulas and numeric values of the asymptotic coefficients ĀV

and B̄V for the 1D models. The ‘volume’ coefficient ĀV , which measures order at large length
scales for nonhyperuniform media, is largest for Debye random media among all models con-
sidered and substantially larger for most values of φ2 than ĀV for overlapping rods, which is
the second largest. The coefficient ĀV for the random checkerboard and equilibrium rods are
identical and the smallest among the nonhyperuniform models. We note that when φ2 is suf-
ficiently large, B̄V for equilibrium hard rods becomes positive (reflecting strong correlations),
which indicates that this system becomes more ordered than the random checkerboard, flip-
ping the ranking indicated in table 1. For the hyperuniform models, we see that B̄V is smaller
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Table 1. Comparison of the asymptotic coefficients ĀV and B̄V for the 1D models. The
microscopic characteristic length scale D is chosen to be s−1, where s is the specific
surface.

Model ĀV B̄V ĀV (φ1 = 1
2 ) B̄V (φ1 = 1

2 )

Debye random media 2(φ1φ2)2 −2(φ1φ2)3 0.125 00 −0.031 25
Overlapping rods 2φ2

1(φ2 − φ1η) φ3
1(φ1η2 + 2φ1η − 2φ2) 0.076 71 −0.008 33

Equilibrium hard rods (φ1φ2)2 − φ3
2

6

(
2 − 7φ2 + 8φ2

2 − 3φ3
2

)
0.062 50 −0.002 60

Random checkerboard (φ1φ2)2 − 1
3 (φ1φ2)3 0.062 50 −0.005 21

Disordered hyperuniform 0 4(φ1φ2)3 0 0.062 50
Periodic rods 0 1

6 (φ1φ2)2 0 0.010 42

Figure 7. Comparison of the local volume-fraction variance σ2
V

(Rs) versus the dimen-
sionless window radius Rs for 1D models at φ2 = 0.5, where s is the specific surface. For
any particular value of R, the lower (higher) the value of σ2

V
(Rs), the greater the degree

of order (disorder).

for periodic rods than it is for disordered hyperuniform media which is consistent with intu-
ition. In summary, when ranking the degree of order of different nonhyperuniform media with
asymptotic coefficients, it is best to use ĀV as this coefficient weights the dominant term in the
large-R asymptotic expansion of the variance for these systems. Analogously, one should use
the coefficient B̄V when ranking order among hyperuniform media.

Figure 7 compares plots of the local volume-fraction variance σ2
V (Rs) versus the dimen-

sionless window radius Rs for 1D models where φ2 = 0.5. We see that local volume-fraction
fluctuations for all window radii are bounded from above by Debye random media and from
below by periodic rods. Table 2 provides values of the local volume-fraction variance σ2

V (Rs)
for selected values of the dimensionless window radius Rs. For almost all values of Rs, the
ranking of the models is in the order indicated in figure 7 and table 1, i.e., Debye random
media is the most disordered, whereas periodic rods are the most ordered. It is noteworthy
that the ranking ascertained from figure 7 and table 2 is consistent with that predicted by the
coefficients ĀV and B̄V for the nonhyperuniform and hyperuniform models, respectively. Inter-
estingly, for Rs # 1, the local variances for equilibrium hard rods and the random checkerboard
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Table 2. Comparison of the local volume-fraction variance σ2
V

(Rs) for 1D models
at φ2 = 0.5 for selected values of the dimensionless window radius Rs, where s
is the specific surface. For any particular value of R, the lower (higher) the value
of σ2

V
(Rs), the greater the degree of order (disorder). Included in the table is the

value of the integral ΣV (∞).

1D model σ2
V

(0.3) σ2
V

(1) σ2
V

(4.5) σ2
V

(9.5) σ2
V

(50) σ2
V

(100) ΣV (∞)

Debye random media 0.174 03 0.094 32 0.026 23 0.012 81 0.002 49 0.001 25 +∞
Overlapping rods 0.163 37 0.068 38 0.016 64 0.007 98 0.001 53 0.000 77 +∞
Equilibrium hard rods 0.163 37 0.059 74 0.013 76 0.006 55 0.001 25 0.000 62 +∞
Random checkerboard 0.150 46 0.057 29 0.013 63 0.006 52 0.001 25 0.000 62 +∞
Disordered hyperuniform 0.164 70 0.058 33 0.003 09 0.000 69 0.000 02 0.000 01 0.196 35
Periodic rods 0.150 00 0.000 00 0.001 03 0.000 23 0.000 00 0.000 00 0.106 45

Figure 8. Comparison of the integral of the local volume-fraction variance ΣV (Ls) ver-
sus the dimensionless distance Ls for 1D models at φ2 = 0.5, where s is the specific
surface.

are essentially identical. For Rs $ 1, the random checkerboard is the second most ordered
microstructure due to a greater degree of clustering on the underlying integer lattice at those
length scales, which reduces volume-fraction fluctuations relative to those of hard rods. As
expected, the disordered hyperuniform model is the second most ordered microstructure for
almost all length scales (Rs # 1). Table 2 also lists the values of ΣV (∞) for the models. While
ΣV (∞) is divergent for all 1D nonhyperuniformmedia, for reasons noted above, the magnitude
of ΣV (∞) for the hyperuniform models provides an integral measure over all length scales that
is consistent with almost all local values of the variance, except when Rs is very small.

Figure 8 compares plots of the integral of the local volume-fraction variance ΣV (Ls) versus
the dimensionless window radius Ls for 1D models where φ2 = 0.5. The rate of growth of
ΣV (Ls) with the dimensionless length Ls for all nonhyperuniform media is consistent with the
aforementioned ranking of the 1D models for the local variance indicated in figure 7, tables 1
and 2. Of course, ΣV (Ls) achieves a constant asymptotic value for the hyperuniform models in
the limit Ls →∞.
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Table 3. Comparison of the asymptotic coefficients ĀV and B̄V for the 2D models at
φ2 = 0.4. The microscopic characteristic length scale D is chosen to be s−1, where s is
the specific surface.

Model ĀV B̄V

Debye random media 0.272 87 −0.261 96
Overlapping disks 0.078 08 −0.026 79
Random checkerboard 0.070 41 −0.022 44
Equilibrium hard disks 0.03827 −0.002 08
Disordered hyperuniform 0 0.065 49
Stealthy hyperuniform 0 0.011 83
Triangular lattice hexagons 0 0.009 65
Triangular lattice disks 0 0.008 44

Figure 9. Comparison of the local volume-fraction variance σ2
V (Rs) versus the dimen-

sionless window radius Rs for 2D models at φ2 = 0.4, where s is the specific surface. For
any particular value of R, the lower (higher) the value of σ2

V (Rs), the greater the degree
of order (disorder).

6.2. 2D models

We present exact closed-form formulas for σ2
V (Rs) and ΣV (∞) for Debye random media. For

the remaining seven 2D models described in section 4, we compute the same quantities for
a volume fraction of phase 2 φ2 = 0.4, which is chosen because this is nearly the highest
value of φ2 consistent with a disordered stealthy hyperuniform packing. Here we also consider
stealthy hyperuniform packings, which we did not examine in one dimension. In the case of 2D
periodic packings, we study the effect of particle shape on the degree of order by considering
both circular disks and hexagons on the sites of the triangular lattice.

For a 2D Debye random medium, the local variance is given by

σ2
V (R) = φ1φ2

{[
4I0(2R/a) − 4L0(2R/a) + 2

] ( a
R

)2
+ 6

[
−I1(2R/a) + L1(2R/a)

]( a
R

)3
}

,

(92)
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Table 4. Comparison of the local volume-fraction variance σ2
V (Rs) for 2D models at φ2 = 0.4 for selected

values of the dimensionless window radius Rs, where s is the specific surface. For any particular value of R,
the lower (higher) the value of σ2

V (Rs), the greater the degree of order (disorder). Included in the table is the
value of the integral ΣV (∞).

2D model σ2
V

(0.3) σ2
V

(1) σ2
V

(4.5) σ2
V

(9.5) σ2
V

(50) σ2
V

(100) ΣV (∞)

Debye random media 0.169 78 0.084 06 0.010 64 0.002 72 0.000 11 0.000 03 0.307 20
Overlapping disks 0.161 64 0.051 86 0.003 56 0.000 83 0.000 03 0.000 01 0.187 30
Random checkerboard 0.161 00 0.048 38 0.003 23 0.000 75 0.000 03 0.000 01 0.185 09
Equilibrium hard disks 0.231 45 0.038 78 0.001 66 0.000 42 0.000 02 3.733 × 10−6 0.158 80
Disordered hyperuniform 0.158 31 0.046 16 0.000 71 0.000 08 5.239 × 10−7 6.549 × 10−8 0.153 60
Stealthy hyperuniform 0.155 28 0.001 94 0.000 12 0.000 01 9.372 × 10−8 9.541 × 10−9 0.118 90
Triangular lattice hexagons 0.156 61 0.013 19 0.000 03 0.000 02 1.351 × 10−7 6.721 × 10−10 0.115 23
Triangular lattice disks 0.154 26 0.009 15 0.000 01 3.758 × 10−6 9.588 × 10−8 1.480 × 10−8 0.110 71
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where Iα(x) is the modified Bessel function of the first kind of order α, and Lα(x) is the modi-
fied Struve function of order α. The large-R asymptotic coefficients in distance units of a are
given by

ĀV = 2φ1φ2, B̄V = −8φ1φ2

π
. (93)

The integral of the variance over all R is given by

ΣV (∞) =
16
3π

. (94)

Table 3 lists numeric values of the asymptotic coefficients ĀV and B̄V for the 2D models at
φ2 = 0.4. Here, the nonhyperuniform and hyperuniform media are listed in order of decreasing
ĀV and B̄V , respectively, reflecting the ranking of the degree of order in these systems by the
asymptotic coefficients. Figure 9 compares plots of the local volume-fraction variance σ2

V (Rs)
versus the dimensionless window radius Rs for the 2D models at φ2 = 0.4. Similar to what was
observed in the 1D models, we see that the local volume-fraction variance for the 2D models
are bounded from above by Debye random media for all window radii and bounded from below
by the triangular lattice of circular disks for most window radii. Table 4 provides values of the
local volume-fraction variance σ2

V (Rs) for selected values of the dimensionless window radius
Rs. For almost all values of Rs, the ranking of the models is in the order indicated in figure 9
and tables 3 and 4, i.e., Debye random media is the most disordered, down to the triangular
lattice of circular disks, which is the most ordered for the reasons noted in section 4.10. While
overlapping disks is the second most disordered model (as it is for the 1D models considered),
the random checkerboard is more disordered than equilibrium hard disks for almost all length
scales (Rs # 1), reversing the general trend observed for their 1D counterparts (see figure 7 and
table 2). This reversal of rank ordering highlights the effect of dimensionality on the degree of
order for the same models and occurs for the reasons given in section 4.10, i.e., the spectral
density for equilibrium hard disks is lower than that of the random checkerboard for small
wavenumbers (see figure 4). The fact that the stealthy packing is the most ordered among the
disordered models was also explained in section 4.10. Lastly, we note that the ranking of order
via the integrated variance ΣV (∞) in the rightmost column of table 4 agrees with that given
by both the asymptotic coefficients as well as the values of the local variance σ2

V (Rs) for very
large (e.g., Rs > 100) length scales.

6.3. 3D models

We present exact closed-form formulas for σ2
V
(R) andΣV (L) or ΣV (∞) for three of the eight 3D

models described in section 4: antihyperuniform media, Debye random media, and disordered
hyperuniform media. In all other cases, we compute the same quantities for a phase 2 volume
fraction φ2 = 0.38, which is chosen because this is nearly the highest value of φ2 consistent
with a disordered stealthy packing. We also consider antihyperuniform media, which was not
done in the lower dimensions. In the case of 3D periodic packings of spheres, we study the
effect of the lattice on the degree of order by considering both the SC and BCC arrangements.

For the 3D antihyperuniform model defined in section 4, the local variance is given by
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Table 5. Comparison of the asymptotic coefficients ĀV and B̄V for the 3D models at
φ2 = 0.38. The microscopic characteristic length scale D is chosen to be s−1, where s is
the specific surface.

Model ĀV B̄V

Antihyperuniform media — —
Debye random media 1.183 13 −2.508 71
Random checkerboard 0.158 88 −0.111 46
Overlapping spheres 0.139 94 −0.094 22
Equilibrium hard spheres 0.026 80 0.01765
Disordered hyperuniform 0 0.705 57
Simple cubic 0 0.016 93
Stealthy hyperuniform 0 0.015 39
Body centered cubic 0 0.011 71

Figure 10. Comparison of the local volume-fraction variance σ2
V (Rs) versus the dimen-

sionless window radius Rs for 3D models at φ2 = 0.38, where s is the specific surface.
For any particular value of R, the lower (higher) the value of σ2

V(Rs), the greater the
degree of order (disorder).

σ2
V

(R) =
9φ1φ2

4

( a
R

)2
+

φ1φ2

16

[
176 − 96 ln

(
2R
a

+ 1
)]( a

R

)3

+
φ1φ2

16

[
30 − 108 ln

(
2R
a

+ 1
)]( a

R

)4
− 15φ1φ2

8

( a
R

)5

+
15φ1φ2

16
ln
(

2R
a

+ 1
)( a

R

)6
. (95)

Notice that for large R, the variance has the scaling σ2
V
(R) ∼ R−2, which is clearly slower

than window-volume decay (i.e., R−3) obeyed by typical nonhyperuniform media. Thus, the
asymptotic coefficients ĀV and B̄V do not exist, i.e., they are unbounded. The integral of the
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Table 6. Comparison of the local volume-fraction variance σ2
V (Rs) for 3D models at φ2 = 0.38 for selected values of the dimensionless window

radius Rs, where s is the specific surface. For any particular value of R, the lower (higher) the value of σ2
V (Rs), the greater the degree of order

(disorder). Included in the table is the value of the integral ΣV (∞).

Model σ2
V (0.3) σ2

V (1) σ2
V (4.5) σ2

V(9.5) σ2
V (50) σ2

V (100) ΣV (∞)

Antihyper. media 0.175 38 0.103 96 0.025 45 0.009 21 0.000 57 0.000 16 ∞
Debye random media 0.171 04 0.085 67 0.007 31 0.001 08 9.064 × 10−6 1.158 × 10−6 0.266 44
Random checkerboard 0.168 13 0.059 82 0.001 47 0.000 17 1.246 × 10−6 1.568 × 10−7 0.180 15
Overlapping spheres 0.164 56 0.054 71 0.001 31 0.000 15 1.105 × 10−6 1.391 × 10−7 0.171 32
Equil. hard spheres 0.160 98 0.040 70 0.000 32 0.000 03 2.163 × 10−7 2.695 × 10−8 0.142 26
Disordered hyper. 0.167 85 0.071 69 0.001 53 0.000 08 1.128 × 10−7 7.054 × 10−9 0.199 83
Stealthy hyper. 0.158 74 0.031 97 0.000 03 1.869 × 10−6 2.492 × 10−9 1.450 × 10−10 0.127 95
Simple cubic 0.159 61 0.036 31 7.524 × 10−6 6.757 × 10−8 4.653 × 10−10 2.467 × 10−10 0.131 76
Body centered cubic 0.159 16 0.026 02 0.000 05 2.320 × 10−7 1.920 × 10−9 4.859 × 10−12 0.123 27
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variance from R = 0 to R = L is given by

ΣV(L) =
6aφ1φ2

5
− 9aφ1φ2

4

(a
L

)
+ aφ1φ2

[
3 ln

(
2L
a

+ 1
)
− 4

](a
L

)2

+
9aφ1φ2

4

[
ln
(

2L
a

+ 1
)
− 1

6

] (a
L

)3
+

3aφ1φ2

8

(a
L

)4

− 3aφ1φ2

16
ln
(

2L
a

+ 1
)(a

L

)5
. (96)

For 3D Debye random media, the local variance is given by

σ2
V (R) = φ1φ2

{
3
[
2 − 3 exp(−2R/a)

]( a
R

)3
− 9

2

[
3 + 7 exp(−2R/a)

]( a
R

)4

− 45 exp(−2R/a)
(a

R

)5
+

45
2

[
1 − exp(−2R/a)

]( a
R

)6
}

. (97)

The large-R asymptotic coefficients in distance units of a are given by

ĀV = 6φ1φ2, B̄V = −27φ1φ2

2
. (98)

The integral of the variance over all R is given by

ΣV (∞) =
6φ1φ2a

5
. (99)

The local variance of 3D disordered hyperuniform media is given by

σ2
V (R) = φ1φ2 exp

(
−2R

a

){[
27
√

3
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(
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(100)

The large-R asymptotic coefficients in distance units a are given by

ĀV = 0, B̄V =
243φ1φ2

64
. (101)

The integral of the variance over all R is given by

ΣV (∞) =
9φ1φ2a

10
, (102)

which, as expected, is smaller than that for 3D Debye random media [cf (99)].
Table 5 provides values of the asymptotic coefficients ĀV and B̄V for the 3D models at

φ2 = 0.38. Once again, the nonhyperuniform and hyperuniform media are listed in order of
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decreasing ĀV and B̄V , respectively. Notably, B̄V ranks the disordered stealthy hyperuniform
packing as more ordered than the crystalline SC one. Figure 10 compares plots of the local
volume-fraction varianceσ2

V (Rs) versus the dimensionless window radius Rs for the 3D models
at φ2 = 0.38. From this plot, we see that local volume-fraction variances in the 3D models are
bounded from above by antihyperuniform media for all window radii and bounded from below
by BCC lattice of spheres for nearly all window radii. Table 6 provides values of the local
volume-fraction variance σ2

V (Rs) for selected values of the dimensionless window radius Rs.
For almost all values of Rs, the ranking of the models is in the order indicated in figure 10 and
table 6, i.e., the antihyperuniform model is the most disordered, followed by Debye random
media, down to the BCC lattice of spheres, which is the most ordered for reasons noted in
section 4.10. However, ranking order according to the integrated variance ΣV (∞) predicts that
the disordered (nonstealthy) hyperuniform model lies between Debye random media and the
random checkerboard, implying that the hyperuniform medium possesses a higher degree of
disorder at short and intermediate length scales which outweighs the high degree of long-
range order characteristic of hyperuniform media. Unlike what was observed in the 1D and
2D models, this ranking of order according to ΣV (∞) contrasts that predicted by both the
local variance at large length scales and the asymptotic coefficients ĀV and B̄V and can be
explained by comparing the relative sizes of the spectral densities for these systems presented in
figure 5.

As was observed in the 1D and 2D models, Debye random media is still the most disordered
among all of the typical disordered nonhyperuniform [cf (9)] models considered here. We also
note that, as was the case in 2D, the stealthy packing is the most ordered among the disordered
models and the SC lattice packing according to all three order metrics. In both cases, these
results occur for reasons provided in section 4.10. Interestingly, the 3D random checkerboard
is more disordered than overlapping spheres for all length scales, reversing the ranking of
their 2D counterparts (see figure 9 and table 4). Overall, we see that the random checkerboard
becomes progressively more disordered relative to the other models as the spatial dimension
increases, again, highlighting the effect of dimensionality on the degree of order for a given
system. This growing disorder with d in the random checkerboard model can be attributed to
a generalized decorrelation principle [23, 66] (see section 7 for more information).

7. Conclusions and discussion

In this work, we have taken initial steps to devise order metrics to characterize the microstruc-
tures of disordered and ordered two-phase media across all length scales via the local volume-
fraction variance σ2

V (R). By studying a total of 22 two-phase models across the first three
space dimensions, including those that span from nonhyperuniform and hyperuniform ones
with varying degrees of short- and long-range order, we found that σ2

V (R) as a function of
the dimensionless window radius Rs provides a reasonably robust and sensitive order metric
across length scales. Additionally, we determined that the asymptotic coefficients ĀV and B̄V as
well as the integrated volume-fraction varianceΣV (∞) are similarly effective order metrics. To
compare the degree of disorder for different microstructures at a fixed volume fraction and at a
specific length scale ℓ, the local volume-fraction variance σ2

V (ℓ) should be used. To make such
comparisons at larger length scales, the asymptotic coefficients ĀV or B̄V , for nonhyperuniform
or hyperuniform media, respectively, are a reasonable and natural choice. Lastly, for an overall
quantification of disorder across all length scales in a system, the integrated variance could
be used. Importantly, we recommend the use of all three order metrics when ranking different
two-phase media in a particular dimension to ascertain cases in which each of them yield the
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same or different rankings. In the latter instance, such discrepancies would imply differences
in the degree of order at small, intermediate and/or large length scales for the media.

Interestingly, using all three metrics, Debye random media is the most disordered among
all of the typical disordered nonhyperuniform [cf (9)] models examined in this work across all
three dimensions. In two and three dimensions, we found that the stealthy disordered hype-
runiform sphere packing is the most ordered among all disordered models considered. In
dimensions one, two, three, the most ordered microstructures, among all of the ones considered,
are packings of identical spheres arranged on the sites of the integer, triangular and BCC lat-
tices, respectively. These lattice packings may be the most ordered across the first three space
dimensions for similar reasons given in the related problem of the ‘diffusion spreadability’
[59], as elaborated below. In a future study, it would be interesting to determine the order of
maximally random jammed particle packings [8, 67, 68], which are hyperuniform [8], relative
to that of the most ordered packings.

An important lesson learned from our study is that the relative order of any particular d-
dimensional model can change with d. For example, going from 1D to 3D, the disordered hype-
runiform medium becomes progressively more disordered at small and intermediate length
scales (even if more ordered at large length scales), having a volume fraction variance com-
parable to that of the random checkerboard in 3D for smaller window radii. The random
checkerboard also becomes progressively more disordered relative to the other models as the
dimension increases. Note that the number of neighbors for a cell in the d-dimensional random
checkerboard is given by 3d − 1. Therefore, as d increases, the number of potential directions
for pair correlations increases exponentially, reducing the overall likelihood of spatial cor-
relations in this model. This specific higher-dimensional behavior is a manifestation of the
decorrelation principle [23, 66].

It is important to recognize that the ranking of order/disorder of two-phase microstructures
via the local variance at fixed phase volume fraction in any particular dimension depends on the
choice of the microscopic characteristic length scale D. We have chosen D to be the inverse of
the specific surface because it is broadly applicable and easily determined [49]. An interesting
topic for future research is the search and evaluation of a length scale D that is superior to
s−1 for improving the rank order of two-phase microstructures. An obvious extension of the
present work is the formulation of order metrics to n-phase media with n ≥ 3, which is formally
straightforward.

To devise a metric that follows previous considerations for point configurations [8] so that
a scalar order metric ψ for two-phase media takes on the value 1 for the most ordered state and
0 for the most disordered state for length scales between L1 and L2, a reasonable choice that
could be used is the following ratio:

ψ =
min

C
{ΣV (L2) − ΣV(L1)}

ΣV(L2) − ΣV (L1)
, (103)

where ΣV (L) is defined in (62) and C denotes the set of all two-phase media. Since the deter-
mination of the minimum is a notoriously difficult task for which there are no proofs, in
practice, the minimum is determined from all candidate structures. Finally, we note a relation-
ship between the recently introduced concept of ‘spreadability’ for time-dependent diffusion in
two-phase media [59, 69, 70] and the order metric as measured by σ2

V(R). The spreadability was
determined for a subset of the models studied here across dimensions. For this common subset
of models, the spreadability at short, intermediate, and long times is roughly proportional to
the magnitude of the local variance at small, intermediate, and long length scales, respectively,
thus registering the same rankings between these common models. Establishing the precise
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reasons for this link between the spreadability and the local variance more rigorously is an
outstanding problem for future research.
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Appendix A. General asymptotic analysis

The local volume-fraction variance σ2
V (R) is generally a function that can be decomposed

into a global part that decreases with the window radius R and a local part that oscillates on
microscopic length scales about the global contribution. The more general large-R asymptotic
formula for the variance for a large class of statistically homogeneous media is given by [24]:

σ2
V (R) = AV(R)

(
D
R

)d

+ BV(R)
(

D
R

)d+1

+ o
(

D
R

)d+1

, (A.1)

where

AV(R) =
1

v1 (D)

∫

|r|!2R
χV(r) dr (A.2)

BV(R) = − c (d)
2Dv1 (D)

∫

|r|!2R
χV(r) |r|dr, (A.3)

are R-dependent coefficients. Observe that when the coefficients AV(R) and BV(R) converge in
the limit R →∞, they are equal to the constants ĀV (R) and B̄V (R), defined by (26) and (27),
respectively. The more general asymptotic analysis has been applied to yield the scaling laws
for class II and class III hyperuniform media indicated in relation (8) [15, 24].

In cases when two-phase media are generated via simulations, it is advantageous to estimate
the coefficients ĀV and B̄V by using the cumulative moving average, as defined in reference
[24], namely,

ĀV ≡ lim
L→∞

1
L

∫ L

0
ĀV (R)dR, (A.4)

B̄V ≡ lim
L→∞

1
L

∫ L

0
B̄V (R)dR. (A.5)
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