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We analyze two equations for their ability to predict the viscosity of bimodal suspensions with hard

spherical particles. The equations express the viscosity as a function of the particle loading and the

packing (or, volume) fraction at which the viscosity diverges (viscosity threshold). The latter is found

from previously published experimental studies for a variety of sphere diameter ratios and fractions

of small particles in total solids. A comparison between the viscosity thresholds and the maximally

random jammed packing verifies their interconnection and permits accurate viscosity prediction of

bimodal suspensions. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901463]

I. INTRODUCTION

Predicting the viscosity of suspensions is a problem of

importance in fields including civil engineering (flow of

cement and concrete), soil mechanics (flow of sediments),

oil well engineering (flow of cement and fracking fluids),

paint design (flow of pigments), and medicine (flow of

blood). This has been an active area of research for at least a

century, and major advances continue to be made with

respect to factors such as the role of interparticle friction,1

the onset of shear thickening,2 and the effect of particle

shape.3 Nevertheless, for the important case of Newtonian sus-

pensions of polydisperse particles, there is still no reliable way

to predict the dependence of viscosity on the concentration or

size distribution of particles. A variety of semi-empirical equa-

tions have been developed that relate the viscosity to the pack-

ing (or, volume) fraction of particles (packing fraction), /, but

they require knowledge of the critical packing fraction, /M, at

which the viscosity diverges. However, as noted in an excel-

lent review by Stickel and Powell,4 the prediction of /M is still

an open problem. In this paper, we demonstrate that, for bi-

modal suspensions, /M is proportional to the packing fraction

of particles in the maximally random jammed (MRJ) packing,

which is readily determined from simulations. If this correla-

tion extends to other polydisperse suspensions, it will provide

a relatively simple method for predicting this important prop-

erty for materials of practical interest.

The viscosity of suspensions of spherical particles

increases exponentially from the dilute to the concentrated

regime when evaluated at a fixed shear rate.5 The exponen-

tial behavior is a result of the energy dissipation related to

the increasing probability of particle interaction with rising

concentration in the system. Even though the physical phe-

nomenon is well known, an exact solution for the evolution

of the viscosity is still absent and, as a consequence, a vari-

ety of semi-empirical equations have been developed.

Common to these relationships is that they reduce to

Einstein’s analytical solution6 for low packing fractions, /,

and that they diverge at a concentration of particles which, in

this paper, is called the viscosity threshold, /M. As /M is

approached, the suspension undergoes a transition between

liquid- and solid-like behavior, in the sense that a finite shear

deformation generates velocity gradients in the mixture at

/ < /M; above the threshold, the suspension is mechanically

stable (solid-like) under similar forces. The viscosity thresh-

old is shear-rate dependent, as documented by Krieger7 for

monodisperse suspensions with spherical particles. The pres-

ent study focuses solely on the (low) shear rate regime where

hydrodynamic forces are dominant and the viscosity is

shear-rate independent.

The viscosity threshold of a bimodal suspension with

rigid, non-colloidal spherical particles exceeds the one for a

monodisperse system.8 By introducing into such a system

another component of spheres with a different size, /M

becomes a function of the small-to-large sphere diameter ratio,

a, and the volume fraction of small particles in total solids, v.

The same two parameters are also known to play a vital role

when determining the dry packing of bimodal systems. The

practical importance of predicting the viscosity of suspensions,

lS, together with the difficulty of making accurate measure-

ments for various particle size distributions, makes it attractive

to identify a connection between lS and the dry packing effi-

ciency of the particles. This motivated Shapiro and Probstein9

to investigate the connection between the viscosity thresholds

of bimodal suspensions and experimentally measured dry

packing densities. They concluded that suspensions must de-

velop local ordering when the packing fraction exceeds

/� 0.524 in monomodal suspensions, which is about 20%

lower than the random close packing obtained when the dry

particles are vibrated in a container. They argued that there is

no single viscosity threshold, but that /M exhibits a range that

depends on the degree of local ordering in the suspension.

We note that /M will exhibit a range that depends on

local ordering, where local ordering is history-dependent in
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that it depends on the preparation of the suspension.

However, for the experimental works discussed here that

study the (low) shear rate regime where the viscosity is

shear-rate independent, we conclude that suspension prepa-

ration and the rheometers used to measure viscosity have

introduced, in nearly all cases, a sufficient degree of random-

ness such that variations in local ordering are not sufficient

to cause /M to vary strongly from experiment to experiment.

In our work, we provide a stronger and more quantitative

correlation than that provided by Shapiro and Probstein,9 and

we find a smaller difference between /M and the random

packing density of dry powders. We obtain these results by

using the best viscosity data from the literature together with

recently developed insight into the MRJ states of binary

sphere systems.

The MRJ packing is defined as the least ordered strictly

jammed packing that remains mechanically stable under a fi-

nite shear deformation.10,11 This structure is obtained by a

packing algorithm that minimizes a set of ordering parame-

ters in the mechanically stable solution space.10 As indicated

in Figure 1, there is a range of packing fractions that are

strictly jammed, which means that they are macroscopically

stable against shear and compression. For monodisperse

spheres, the densest and most perfectly ordered of these is

the face-centered cubic crystal (FCC), and the least ordered

(maximally random) is MRJ with /MRJ� 0.64. It is perhaps

counter-intuitive that the strictly jammed packings with

/ < /MRJ are more ordered. The phase diagram in Figure 2

schematically illustrates the approach to jammed packings.12

As the density of the system is raised under equilibrium con-

ditions, there is a transition to a two-phase region of coexis-

tence of fluid and ordered (crystalline) packings, followed by

complete crystallization. However, there are also nonequili-

brium paths that lead to noncrystalline jammed packings; the

final density depends on the rate of compression of the pack-

ing. We suggest that concentrated suspensions effectively

fall near to the MRJ point reached by nonequilibrium paths

when ordering and crystallization are suppressed by suspen-

sion preparation (mixing) and the agitation provided during

the viscosity measurement process. The viscosity diverges

when the packing fraction approaches the boundary of the

strictly jammed region in Figure 1. We will show that /M

falls remarkably close to /MRJ .

While it is true that there are non-equilibrium paths that

lead to non-crystalline jammed packings that have packing

fractions substantially different from /MRJ , these paths are

apparently negligible in number compared to those that reach

a jammed fraction very near to /MRJ , for packings prepared

without explicit or implicit ordering mechanisms. A very

large body of work, including simulation and experiment,

supports this conclusion.10,11,13–16 Those studies show that

the MRJ packing fraction /MRJ for frictionless monodisperse

spheres varies somewhat, but it is always near to �0.64; for

example, it is found computationally to be 0.634 by

Hopkins, Stillinger, and Torquato in Ref. 16. The packing

fraction of �0.64 is also the random close packed (RCP)

packing fraction of frictionless monodisperse spheres that is

often found;17,18 though the terms MRJ and RCP could be

used to describe the same packings, the maximally random

jammed state is precisely defined, whereas in the past, the

term RCP has been more loosely applied.10

Based on a large body of literature and detailed studies

such as described in Refs. 13,15, and 16, we conjecture that

in the infinite volume limit, non-equilibrium packings of

frictionless objects (such as spheres) prepared without

explicit ordering, such as tailoring of interparticle forces,

external forces or directed sphere placement, and without

implicit ordering such as equilibration, will become mechan-

ically stable (jammed) at a value of /MRJ dependent only on

the shapes and relative sizes of the constituent particles. In

the case of binary spheres, this conjecture implies that /MRJ

will depend only on the sphere diameter ratio, a, and the

FIG. 1. Illustration of the possible types of packings as a function of packing

fraction and degree of order. The blue shaded region in the upper right con-

sists of strictly jammed packings, the most disordered of these are maxi-

mally random jammed, with /MRJ� 0.64. The densest possible packing is

face-centered cubic (FCC) with /FCC¼p/3�2� 0.74, and the least dense

strictly jammed packing has /min�p/2�2� 0.49. (After Torquato et al.10,11)

FIG. 2. Phase diagram for frictionless hard spheres, showing the equilibrium

path with increasing pressure or density, varying from liquid through a range

of coexistence of liquid and crystal, into a crystalline range that ends at the

maximum packing fraction (p/3�2� 0.74) corresponding to a face-centered

cubic (FCC) crystal. (After Rintoul and Torquato.11,12)
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fraction of small particles in total solids, v. Additionally,

should ordering mechanisms be present but frustrated by

mixing or other means, in accordance with past findings, we

state that the packing fraction at which jamming occurs

should be equal to or very nearly equal to /MRJ .

II. ANALYSIS

We take advantage of the highly accurate values of

/MRJ provided in Ref. 16 to investigate the correlation

between /MRJ and the viscosity threshold from the most

consistent viscosity studies on bimodal suspensions with

rigid, non-colloidal spherical particles.8,19–21 These studies

were carried out at shear rates high enough so that hydro-

dynamic, rather than Brownian, forces are dominant, but

low enough to avoid artifacts (e.g., lubricating layers sepa-

rating the suspension from the wall of the vessel). The par-

ticles in each of the two modes in the experimental studies

show some distribution, ranging from arithmetic particle

volume standard deviations of 10%–30% in many cases to

as much as 75% in the work of Polinski et al.,21 whereas

the simulations use strictly binary packings. However,

some additional simulations of the MRJ packing fraction

of bimodal (rather than strictly binary) packings of spheres

have been performed, for modes with lognormal size distri-

butions and arithmetic volume standard deviations ranging

from 20% to 500%. These simulations suggest that the rel-

atively small arithmetic standard deviations of the

individual modes in the experimental work do not contrib-

ute significantly to a difference in packing fraction

between the bimodal and strictly binary cases. For exam-

ple, a bimodal MRJ packing of spheres where the average

diameters of the modes have a 5:1 ratio, where 75% of the

volume of spheres lies in the large mode and 25% in the

small mode, and where the volume standard deviations are

20% for the small mode and 100% for the large mode, ex-

hibit a packing fraction that is only about 1.2% higher than

for the strictly binary case with the same diameter ratio

and relative composition fractions. Further simulations of

the MRJ packing fractions of bimodal sphere distributions

are in progress, and the results of this study will be pre-

sented in a future work.

To relate /M to /MRJ , we need an expression for the

relative viscosity, lr ¼ lS=lL, where lS is the viscosity of

the suspension and lL is the viscosity of the liquid in which

the particles are suspended. In the absence of an exact ana-

lytical theory for lr , we utilized the following semi-

empirical relationships. The first was chosen because it is

widely used, and the second because it performs exception-

ally well

lr ¼ 1� /
/M

� �� �� g½ �/M

; (1)

lr ¼ 1þ 0:75
/=/M

1� /=/Mð Þ

� �� �2

: (2)

FIG. 3. Experimentally measured viscosities (points) and fits to Eqs. (1) and (2) (curves). Subscripts 1 and 2 refer to Eqs. (1) and (2), respectively. (a) and (b)

Data from Storms et al.20 for a¼ 0.203 and v¼ 0.5 fit with /M;1¼ 0.682 and /M;2¼ 0.685; (c) and (d) measurements from Poslinski et al.,21 where a¼ 0.192

and v¼ 0.75 fit with /M;1¼ 0.597 and /M;2¼ 0.629.

184902-3 Spangenberg et al. J. Appl. Phys. 116, 184902 (2014)



Equation (1) was proposed for monodisperse suspensions by

Krieger and Dougherty;22 in the present study, the intrinsic

viscosity ½g� is fixed at 5/2, so that the equation reduces to

Einstein’s expression for dilute solutions, lr ¼ ð1þ 2:5 /Þ.
Equation (2) was proposed by Chong et al.,8 who showed

that it agreed well with the viscosity measurements on a

monodisperse suspension and three different bimodal sys-

tems. This equation also reduces to Einstein’s expression,

but only if /M¼ 0.6, which is appropriate for a monodisperse

system; therefore, it is not expected to perform well at low

concentrations for polydisperse suspensions.

Two examples of the quality of the fit of Eqs. (1) and

(2) to experimental data from Refs. 20 and 21 are shown in

Figure 3. The viscosity threshold is found by a least-

squares fit to log[viscosity], so that the results are not

excessively biased by higher viscosities. Each of the equa-

tions provides a good approximation to the experimental

data, but the two equations predict different viscosity

thresholds, especially for the data of Poslinski et al.;21 in

the latter case, Eq. (1) predicts a viscosity threshold that is

less than for a monodisperse suspension. Both of these

differences are artifacts that originate from the fact that the

experimental data points for these studies are not collected

close to /M.

Comparing the top and bottom charts in Figure 3, it is evi-

dent that similar viscosities can be obtained at different pack-

ing fractions by altering the v value. In this case, /M changes

by more than 0.05 regardless of whether Eq. (1) or Eq. (2) is

used. An increase in /M can also be obtained by reducing a,

since this allows the smaller spheres to be located in the inter-

stices of the larger particles.8 A similar trend is known from

the MRJ packings of binary systems16 (see Figure 4); however,

those packings also include small spheres separating large par-

ticles, as well as filling the interstices.

We have analyzed 17 different ða; vÞ combinations from

four different authors8,19–21 to compare the viscosity thresh-

olds derived from Eqs. (1) and (2) to the densities of MRJ bi-

nary packings. As shown in Table I, the bimodal suspensions

cover a good part of the ða; vÞ-plane with a ranging from

0.137 to 0.477 and v from 0.1 to 0.75. A linear correlation is

obtained by plotting /M, obtained from fits of the experimen-

tally measured data to both Eqs. (1) and (2), versus /MRJ

(see Figure 5). The only two data points that stand out are

from Sweeny and Geckler19 for a¼ 0.137 and v¼ 0.25 and

Poslinski et al.21 for a¼ 0.192 and v¼ 0.1. Sweeny and

Geckler’s data set consists of a single measurement, so a

slight variation in that ð/; lrÞ point has a great impact when

determining /M and that could explain why that point stands

out; a viscosity decrease of only 20% would move that point

onto the line. In case of Poslinski et al. data set, /M exceeds

/MRJ , which is physically impossible according to our con-

jecture unless the suspension was prepared with explicit or

implicit ordering, since it implies that the viscosity would be

finite at /M ¼ /MRJ . These two data points are excluded in

the rest of this analysis.

The best linear correlation26 between /M and /MRJ is

presented in Figure 5. The plot illustrates that the correlation

is slightly weaker for Eq. (1) than for Eq. (2). Most of the

studies that are analyzed to generate Figure 5 are limited to

FIG. 4. The MRJ packing fraction for binary systems as a function of v for

selected a values (data from Hopkins et al.16).

TABLE I. The data from the 17 investigated bimodal systems. Subscripts 1 and 2 refer to Eqs. (1) and (2), respectively.

Authors a v /M;1 Error,1 /M;2 Error,2 /MRJ

Chong et al. [Fig. 7 in Ref. 8, also Tables 21–23 in Ref. 23] 0.477 0.25 0.619 0.001 0.633 0.002 0.678

0.313 0.25 0.660 0.002 0.668 0.001 0.726

0.138 0.25 0.744 0.001 0.744 0.001 0.809

Sweeny and Geckler [Table VII in Ref. 19] 0.371 0.25 0.622 … 0.645 … 0.705

0.137 0.25 0.685 … 0.687 … 0.809

Storms et al. [Figs. 4–7 in Ref. 20] 0.432 0.25 0.668 0.006 0.674 0.002 0.686

0.244 0.25 0.724 0.008 0.700 0.002 0.757

0.432 0.5 0.601 0.004 0.633 0.002 0.678

0.338 0.5 0.640 0.002 0.658 0.001 0.696

0.244 0.5 0.668 0.002 0.677 0.001 0.719

0.203 0.5 0.682 0.004 0.685 0.001 0.728

0.432 0.75 0.574 0.002 0.620 0.002 0.657

0.388 0.75 0.603 0.001 0.626 0.001 0.666

Poslinski et al. [Fig. 3 in Ref. 21] 0.192 0.1 0.768 0.023 0.729 0.010 0.698

0.192 0.3 0.733 0.020 0.714 0.011 0.771

0.192 0.5 0.698 0.018 0.694 0.013 0.732

0.192 0.75 0.597 0.009 0.629 0.006 0.683
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the interval 1 � lr � 100. Only the study by Chong et al.8

includes measurements close to /M. Equation (2) provides a

good fit to those data (e.g., see Figure 6(a)), but the fits are not

as good as for the other studies at relative viscosities between

1 and 100 (Figure 6(b)). Nevertheless, running a similar analy-

sis as depicted in Figure 5, now considering Chong et al.8

measurements only in the interval 1 � lr � 100, results in

good fits (Figure 6(c)) and gives the same strong linear correla-

tion between /M and /MRJ , as shown in Figure 7.

Consequently, replacing /M with 0.935 /MRJ in Eq. (2) ena-

bles a good estimate of the relative viscosity of a bimodal sus-

pension with hard spherical particles in the low shear rate

regime. The quality of the prediction is illustrated in Figure 8.

A similar analysis could be performed on any of the

many equations that have been proposed to represent the vis-

cosity of suspensions. For example, Eq. (21) of the paper by

Martys24 was derived to match the Einstein and Huggins

coefficients (i.e., the first and second terms in the expansion

of viscosity versus packing fraction) and to diverge with an

exponent of 2. Note that the equation contains a typographi-

cal error. The term in the definition of K2 that reads n (n� 1/

2) should instead be n (n� 1)/2. Using Martys equation, we

find a noisier correlation than that shown in Figure 7.

Shapiro and Probstein9 used a complicated semi-empirical

FIG. 5. The viscosity threshold from (a) Eq. (1) and (b) Eq. (2) versus the

MRJ packing fraction for 17 binary systems. The slope represents the best

constant correlating the two parameters. Subscripts 1 and 2 refer to Eqs. (1)

and (2), respectively. The correlation coefficients for the linear fits are (a)

R2¼ 0.828 (excluding the dubious points from Sweeney and Geckler19 and

Poslinski et al.21) and (b) R2¼ 0.894. The error bars represent the error due

to extrapolation to find /M from the data, and do not explicitly include any

experimental error in the viscosity measurement.

FIG. 6. (a) The fit of Eq. (2) to Chong et al.8 data for a¼ 0.313 and v¼ 0.25.

(b) The same fit when zooming in on the measurements below a relative vis-

cosity of 100. (c) The fit of Eq. (2) to the same set of data, but excluding the

data points above a relative viscosity of 100. The correlation coefficients for

the fits are (b) R2¼ 0.875 and (c) R2¼ 0.987.
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equation that yielded relatively low values for /M. None of

these empirical equations is expected to be exact as /M is

approached, so each will give a slightly different result.

However, if the true relationship of /M and /MRJ is

approximated through the use of a given viscosity equation,

then the viscosity predictions based on that equation should

be reasonably accurate.

A consequence of the correlation analysis is that the vis-

cosity threshold from Eq. (2) and /MRJ must have similarly

shaped surfaces in the ða; vÞ-plane. Knowing that makes it

possible to plot the v-value that generates the maximum vis-

cosity threshold, which corresponds to the least viscous sus-

pension, for selected a-values (see Figure 9). That optimum

is obtained at 0.21 � v � 0.27 for any a< 0.45 (which is the

limit of the range for which data are available). This is con-

sistent with the experimental observation that the minimum

viscosity of bimodal suspensions can be found in the interval

0.15 � v � 0.35.8,21

As stated previously, the upper bound for /M of a con-

centrated suspension cannot exceed /MRJ if the suspension is

prepared without explicit or implicit ordering. Figure 1 indi-

cates that if this is not the case, there is a wide range of

strictly jammed structures other than MRJ that might be

encountered as the packing fraction in the suspension is

increased, and Figure 2 indicates that the nonequilibrium

path determines the jamming density. The proximity of /M

to /MRJ demonstrated here implies that the preparation meth-

ods and shear imposed by the rheometer measurement intro-

duces nearly optimal disorder. The diversity of jammed

structures could account for some of the scatter in the

/M�/MRJ correlation, but we cannot exclude the influence

of experimental factors including friction, particle size varia-

tion, gravitational settling, and interparticle attraction; for

example, the ratio of /M//MRJ is expected to be higher for

truly frictionless particles.

III. CONCLUSION

A linear correlation was found between the viscosity

threshold and MRJ packing fraction, resulting in an equation

for accurate viscosity prediction of bimodal suspensions

with hard spherical particles. Future research will clarify

whether similar correlations exist between the viscosity

threshold and MRJ packing of bimodal (rather than strictly

binary) systems, more broadly polydisperse particles, and

systems with non-spherical particles such as polyhedra.3,25

FIG. 7. The viscosity threshold from Eq. (2) versus the MRJ packing for 15

binary systems when evaluating the data sets up to a relative viscosity of

approximately 100. The slope represents the best constant correlating the

two parameters (R2¼ 0.849).

FIG. 8. The fit of Eq. (1) with /M;1¼ 0.927 /MRJ and Eq. (2) with

/M;2¼ 0.935 /MRJ to measurements from (a) Storms et al.20 for a¼ 0.203

and v¼ 0.5 and (b) Poslinski et al.,21 where a¼ 0.192 and v¼ 0.75.

Subscripts 1 and 2 refer to Eqs. (1) and (2), respectively.

FIG. 9. The v value that produces the maximally random jammed packing

fraction /MRJ (and /M) for selected a values (data from Hopkins et al.16).
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