
Order and disorder are often regarded as polar opposites. 
Because of the sharply distinct properties of ordered  
and fully random systems, the applications of ordered and  
disordered systems are commonly believed to be sep-
arated from each other; an example is the degraded 
signal-transport performance of disordered physical1 
or network2 systems. However, ‘disorder’ actually 
encompasses an immense variety of patterns that lack 
long-range order. Unlike the strict definitions of order,  
disorder tends to be vaguely defined and is often 
considered challenging to manipulate.

However, the classifications and applications of 
disorder are increasingly being explored in a vari-
ety of research fields: examples are scale-free graphs 
in network science3 and the seemingly random scat-
terers with crystal-analogous behaviours4. With the 
formulation of a common definition of uncorrelated 
disorder, we can enjoy a full spectrum of disorder that 
includes order, uncorrelated disorder and novel classes 
of correlated disorder (Fig. 1), each offering unique 
properties derived from engineered structural pat-
terns. Researchers in multiple fields started to explore 
deliberately engineered structural patterns to achieve 
specific goals, such as fine-tuning wave propagation5 
or developing robust networks2. Notably, such efforts 
commonly yield structures that are not ordered but 
also not completely randomized in the usual sense. 
They, instead, occupy the rich terrain between those 
two conceptual extremes, simultaneously exhibiting 
unique advantages selectively derived from both order 
and uncorrelated disorder. Notable examples can be 
found in soft-condensed-matter physics and network 

theory, including hyperuniform states4 (Box 1), jamming 
transition6 and small-world graphs2.

In photonics, the use of structural engineering of 
ordered structures dates back to the analysis of multilayer 
films by Lord Rayleigh7 in the 1880s. Ordered structures, 
including distributed Bragg reflectors, photonic crystals8 
and quasicrystals9 (Fig. 1a,b), are now a standard toolkit 
for generating spatially extended optical modes or pho-
tonic bandgaps (PBGs), which allow long-range wave 
propagation or frequency-selective omnidirectional 
reflection, respectively. Most notably, photonic crystals 
have garnered great attention as ‘semiconductors for 
light’ that allow wide-ranging applications8, as they can 
realize the wide assortment of band-structure-related 
features found in condensed-matter physics, includ-
ing topologically nontrivial bands10. Wave behaviours 
in quasicrystals have also been explored using optical 
induction in photosensitive materials11 or evanescently 
coupled waveguides12. Such photonic quasicrystals allow 
the transition between extended and localized modes  
in the absence of disorder, as demonstrated in 1D12 and 
2D13 lattices.

By contrast, research on optical disorder started 
from the other extreme: uncorrelated disorder (Fig. 1h). 
Since Anderson’s Nobel-prize-winning discovery14 of 
the absence of diffusion in disordered crystals, light 
behaviours in disordered structures have been inten-
sively studied, starting from absorption near a photon 
mobility edge15 and weak16 or strong localization17,18 in 
uncorrelated disordered systems. Exotic optical proper-
ties inside disordered structures have also been exam-
ined in the spectral domain, as in the case of structural 
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colours in complex media19–21 and of the annihilation of 
PBGs22. Various practical applications have been realized 
by utilizing spatial localization or spectral broadening in 
disordered photonic structures, such as imaging23, light 
harvesting24 and lasing25. For this regime, the review 
article by Diederik S. Wiersma26 provides an excellent 
pathway for exploiting disorder for photonics, with 
an interpretation based on multiple scatterings: it dis-
cusses weak and strong localization, natural disorder 
and the quantum nature of multiple scatterings, as well 
as the early works on hyperuniformity. Investigations 
of the regimes between perfect order and uncorrelated 
disorder have followed. Disordered platforms in these 
intermediate regimes are just starting to pave the way 
to nontrivial wave phenomena and photonic devices, 
simultaneously achieving or exceeding the advantages 
of ordered and highly randomized structures. Before 
introducing these fascinating achievements, we discuss 
the regimes of disordered structures between extremes, 
illustrating the classification of disorder.

Classification of disordered structures
The ability to engineer disorder in materials requires a 
capacity to classify them by quantifying their degree of 
order. Devising such ‘order metrics’ is a highly nontriv-
ial challenge, but the tentative solutions put forth dur-
ing the past two decades have been fruitfully applied to 
characterize a wide variety of systems, including sphere 
packings27–29, simple liquids27,30, glasses31, water32, ran-
dom media33 and biological systems34. If sensitive order 
metrics can be established, one can then devise exper-
imental or numerical protocols that generate micro-
structures with prescribed order metrics and desirable 
physical properties35.

Material structures are generally characterized by a 
spectrum of disorder that spans from purely uncorre-
lated disorder to perfect order. The extreme ends of this 
disorder spectrum are well understood. Crystallography 
tells us that a crystal is characterized by long-range 
translational and orientational order, which are mani-
fested in the scattering intensity as Bragg-peak patterns 
(Fig. 1a and Box 1). A quasicrystal lacks long-range 
translational order but possesses a long-range orienta-
tional order that is prohibited crystallographically36,37. 
Although the scattering patterns of quasicrystals exhibit 
Bragg peaks (Fig. 1b), these are dense and the ratios of 
any two Bragg-peak locations are irrational numbers, in 
contrast to those of crystals. On the opposite extreme 

of uncorrelated disorder for a statistically homogene-
ous system (Fig. 1h) is the Poisson distribution, which 
is mathematically well understood. Intermediate states 
within the disorder spectrum are the most difficult to 
define and characterize quantitatively. For example, 
it is unclear where in this spectrum defective crystals 
(Fig. 1c,d), disordered systems with short-range order 
(liquids and glasses) and disordered hyperuniform 
systems and their modifications (Fig. 1e–g) lie.

Many relevant order metrics have been devised 
to classify disordered structures, especially at inter-
mediate states between order and uncorrelated dis-
order. Although a comprehensive discussion and 
classification of order metrics is beyond the scope of 
this Review, it is useful here to note some representative 
order metrics that have been identified, including the 
bond-orientational38,39, translational28,40, long-range4,41,42 
and τ order metrics40. Because all these order metrics 
have strengths and weaknesses, the question arises as to 
what the characteristics of a good order metric are. It 
has been suggested that a good order metric should have 
some qualitative and quantitative properties28,29,43 (Box 2). 
For example, the typical bond-orientational order 
metric38,39 measures only local order and, hence, cannot 
capture order at intermediate and large length scales. By 
contrast, the Hurst exponent42 cannot capture order at 
short length scales. By comparison, the τ order metric40, 
which is proportional to the volume integral of [S(k) − 1]2 
over the entire reciprocal space, satisfies the length-scale 
criterion of a good metric: quantifying the degree of 
disorder across all length scales40,44,45.

Each class of disorder can lead to specific wave behav-
iours inside materials. In examining light–matter inter-
actions, the identification of the relationship between 
order metrics and wave properties is a complex, multi
dimensional problem depending on a variety of wave 
quantities interrelated through Maxwell’s equations, but 
one that should be pursued, in our view. The concept 
of order metrics has been insufficiently exploited in 
photonics as compared with other many-body systems 
— sphere packings27,29, simple liquids27,30 and glasses31 — 
hindering research in disordered photonics; Table 1 lists 
examples of the order metrics discussed in this Review. 
The development and application of a well-defined set 
of order metrics for photonics deserves attention to fully 
exploit the large number of available degrees of freedom 
to design novel disordered photonic materials.

Engineered disorder in photonics
Light flows in disordered structures are determined 
by the interactions between multiple wave quantities 
and the many degrees of freedom inherent to disordered 
systems. This complexity hinders the understanding 
of disordered photonics. At the same time, it provides 
substantial design freedom for precisely controlling 
a set of wave properties. For example, because of the 
distinct expressions of each wave quantity in the wave 
equation, the transition from order to uncorrelated dis-
order does not affect each wave quantity equally, allow-
ing for seemingly contradictory phenomena, such as 
narrowband resonances with broadband momentum 
transformation46. Furthermore, even at similar strengths 
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of perturbations of the ordered state, various patterns of  
disorder can lead to entirely new functionalities, as 
shown by the lack of PBGs in systems with uncorrelated 
disorder in comparison to the complete PBGs (blocking 
all directions and polarizations of light) in disordered 
hyperuniform structures5,47.

To treat these multifaceted manifestations of disorder 
in photonic systems, in the following sections, we classify 
light–disorder interactions and the related order metrics 
in terms of controlled wave quantities to describe coher-
ent design parameters and the underlying physics for 
each domain, and also to categorize device applications. 
Most importantly, this wave-quantity-based classifica-
tion of disorder clarifies the concept of ‘engineering’ dis-
order: purposefully combining order and randomness to 
customize optical waves. Figure 2a illustrates the concept 
of engineering disorder, assuming two wave quantities, 

Qp and Qq. These generic quantities can be selected from 
the physical properties of photons (such as frequency, 
spatial mode, wavevector or topology) or from their 
wave properties (such as PBGs, localization, angular 
bandwidth or spin–orbit coupling), as shown in Fig. 2b. 
The state of light in the 2D space of wave quantities is 
then defined by the point (Qp, Qq).

In the simplest case of uncorrelated perturbations 
applied to ordered structures, we can expect the triv-
ial transition between order and uncorrelated disorder 
(arrow labelled traditional disorder in Fig. 2a) with sim-
ilar gradual variations of both wave quantities, such as 
the gradual decrease of the bandgap width and local-
ization length with increasing perturbation. However, 
by exploiting the vast design freedom in disordered 
structures, we can find almost infinite possible loci for 
the transition between order and uncorrelated disorder 
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Fig. 1 | Landscape of order and disorder. Selected states of 2D statistically 
homogeneous materials organized according to their degree of disorder, 
from lowest to highest: crystals (panel a), quasicrystals37 (panel b), weakly 
defective crystals (panel c), strongly defective crystals (panel d), disordered 
stealthy hyperuniform materials50 (panel e), non-stealthy hyperuniform 
materials4 (panel f), anisotropically defective stealthy hyperuniform materials  
(panel g) and uncorrelated disordered states (panel h). The left and right 
parts of each sub-panel show the particle distribution and structure 
factor S(k) (Box 1) of each state, respectively. The white dashed lines in 
panels e and g represent the regions of suppressed scattering. In addition 
to the traditional regimes of order (such as crystals and quasicrystals) and 
disorder (such as defective crystals) that are defined by long-range order 
and its breaking, indicated by the arrows with the green text boxes,  

the utilization of S(k) and its associated order metrics40,45, indicated  
by the arrows with the yellow text boxes, significantly extends the range 
of order and disorder that can be defined, including disordered  
hyperuniform systems and their modification. Strong perturbations in 
crystalline systems and designed perturbations in hyperuniform systems 
can lead to different forms of non-hyperuniform systems. There are  
also vast, undescribed regimes, including inhomogeneous101 and 
dynamical systems159. The phenomena associated with S(k) — Bragg 
peaks in crystals and quasicrystals and suppressed scattering in 
hyperuniform materials — are general to d-dimensional systems, though 
the detailed profile of S(k) is dependent on the dimensionality, as  
was demonstrated for the asymptotic behaviour of S(k) (|k| → 0) in 
hyperuniform systems60.
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(dashed lines in Fig. 2a). The key idea behind engineer-
ing disorder concerns the design of such loci to achieve 
the independent control of target wave quantities and, 
thus, realize a system mixing the properties of order and 
uncorrelated disorder (stars in Fig. 2a), such as complete 
and large bandgaps with perfect isotropy5,47.

Not all the diverse facets of disordered photonics can 
be included in this brief Review. Our focus is on recent 
milestones in the field of engineered disorder, which 
are classified in terms of target wave quantities: spectral 
responses, localization and transport, wavefront shap-
ing and topological properties. Table 1 summarizes the 
underlying physics and target wave quantities treated in 
this Review.

Engineered spectral responses
Ordered photonic structures exhibit distinct spectral 
responses, such as PBGs in crystals8 and self-similar 
spectra in quasicrystals9. Local perturbations in ordered 
systems result in defect modes in the spectrum that 
allow for guided or resonant wave behaviours8. At the 
other extreme, the introduction of randomness in 
the entire structure results in chaotic and broadened 
spectral responses, such as the annihilation of PBGs22 
or broadband absorption48,49. This apparent distinction 
between the spectral responses of ordered and random 
structures has differentiated their conventional use in 
photonic devices.

In the intermediate regimes between order and 
uncorrelated disorder, engineered disorder allows for 
anomalous spectral responses starkly distinct from 
the conventional broadening in uncorrelated disorder, 
while keeping some wave properties typical of uncor-
related disorder. By employing approaches such as 
Fourier-space design35,50, tessellation51,52, deformation53 
and transformation42, engineered disorder can combine 
the advantages of order and randomness. In this sec-
tion, we exemplify the engineering of spectral responses 
in this intermediate regime of disorder, achieving 

crystal-analogous spectral responses in conjunction with 
random-analogous broadband momentum coupling, 
isotropy and localization lengths.

Chaotic channels for broadband coupling. A system is 
called chaotic if it is exponentially sensitive to its initial 
conditions. Such sensitivity originates from the onset 
of unstable and aperiodic states governed by determin-
istic laws54. Therefore, chaotic phenomena involve the 
emergence of disorder, such as broken symmetries or 
reduced correlations that alter symmetry-protected 
states. In photonics, a deformed microcavity breaking 
continuous rotational symmetry53 achieves chaotic wave 
trajectories sensitive to initial conditions. Combined 
with the notion of chaotic channels, engineered disor-
der has provided new design freedom in the spectral and 
momentum domains, realizing broadband coupling to 
high-quality-factor resonances.

For the perturbed radius r(φ) = R + δ(φ) along the 
azimuthal axis φ, the degree of disorder in a deformed 
microcavity is solely determined by the periodic defor-
mation δ(φ) = δ(φ + 2π). For a semi-analytical approach 
using the Kolmogorov–Arnold–Moser theorem53, one 
scalar parameter is usually applied to explore chaotic 
phenomena. For a limaçon structure r(φ) = R(1 + εcosφ), 
the scalar parameter ε serves as an order metric, quan-
tifying the deformation of the microcavity (Table 1). 
According to the Kolmogorov–Arnold–Moser theorem, 
some regular (periodic or quasiperiodic) ray dynamics 
survive for a sufficiently smooth microcavity deforma-
tion (for example for ε ~ 0.1, close to order), whereas 
a large deformation (ε ~ 0.4, close to full randomness) 
results in predominantly chaotic wave dynamics. In the 
interesting regime of moderate deformation (ε ~ 0.3), 
one can expect the emergence of engineered disor-
der, mixing wave properties of order (or unperturbed 
microcavities) and full randomness (or large defor-
mation). Indeed, regular and chaotic wave dynamics 
coexist, interestingly coupled with each other by dynam-
ical tunnelling55, a generalized tunnelling process that 
includes any classically forbidden transitions. Owing to 
the unique properties of each regime and to dynamical 
tunnelling, a suitable engineering of ε enables photonic 
devices with totally different functionalities.

Illustrative examples of each regime and their device 
applications are shown in Fig. 3. Through the substan-
tial deformation of a resonator with a D-shaped geom-
etry (Fig. 3a), fully chaotic ray dynamics are obtained. 
This chaotic field interference results in a very small 
characteristic length of field profiles and, thus, pro-
hibits the build-up of coherent waves, allowing for the 
spatiotemporal stabilization of a laser56 with suppressed 
nonlinear interactions. By contrast, a very weak defor-
mation of a resonator (Fig. 3c) that mostly conserves 
regular ray dynamics leads to weak dynamical tunnel-
ling and radiation loss. The delicate balance between 
coupling (dynamical tunnelling) and energy transfer 
(radiation loss) is achieved by controlling the strength 
of the deformation57, which leads to the emergence of 
an exceptional point: a singularity in the system para
meter space at which multiple eigenvalues and their 
eigenmodes coalesce58. Because the exceptional point 

Box 1 | Hyperuniform systems

The spatial arrangement of a system consisting of N identical particles in a volume V under 
periodic boundary conditions is described by the Fourier transform of the particle density: 
the collective density variable is defined as ρ(k) = ∑jexp(−ik∙rj), where k is the wavevector 
and rj the position of the jth particle. The structure factor is defined as S(k) = |ρ(k)|2/N and is 
proportional to the intensity in elastic scattering radiations. A hyperuniform system is one 
in which S(k) tends to zero as |k| → 0 in the thermodynamic limit (N → ∞ and V → ∞, such 
that N/V is a fixed constant), thus, suppressing infinite-wavelength density fluctuations. 
Because the particle ‘density’ determines the refractive index profile in photonics and S(k) 
is proportional to the scattering intensity, hyperuniformity describes optical structures 
supporting the complete suppression of wave scattering as |k| → 0.

Stealthy hyperuniformity is a stronger form of hyperuniformity in which S(k) ~ 0 for 
|k| < K, resulting in suppressed density fluctuations from infinite wavelength down to 
intermediate wavelengths (~2π/K, white dashed line in Fig. 1e). All crystals are stealthy, 
but the discovery of disordered stealthy hyperuniform systems was a remarkable 
development, because their scattering patterns for |k| < K are exactly like those of crystals 
and, yet, they are fully isotropic structures without any Bragg peaks. Such amorphous 
states are different from weakly perturbed lattices, which are anisotropic structures that 
generally possess Bragg peaks. Moving beyond the description of disorder in ideal gases, 
liquids and glasses, hyperuniformity and stealthiness generalize the notion of long-range 
order, enabling one to think of crystals, quasicrystals, prime numbers and certain exotic 
disordered systems as having this generalized long-range order.
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results in a narrow linewidth for each coalesced eigen-
mode, photonic devices with ultrahigh sensitivity can 
be realized.

The intermediate regime of deformation (Fig. 3b) 
hosts coexisting regular and chaotic wave dynamics. 
The disorder-assisted dynamical tunnelling between 
‘narrowband’ (order-like) resonance modes and chaotic 
‘broadband’ (random-like) momentum channels enables 
the independent control of spectral and momentum 
responses, resulting in broadband impedance match-
ing for waveguides coupling to high-quality-factor 
deformed resonators46. Notably, this result allows one 
to overcome the traditional bandwidth limitation in 
evanescent coupling methods.

Because of the difficulty in clarifying the relation-
ship between the deformation and chaotic phenomena, 
most approaches have focused on controlling a few 
scalar parameters46,56,57 that manipulate the bound-
ary of microdisks. Further design freedom should be 
enabled by microdisks composed of inhomogeneous 
media or by the introduction of multiple parameters for 
the sophisticated design of microdisk boundaries. For 
example, transformation optics enables the determinis-
tic deformation of microdisks made of inhomogeneous 
metamaterials with unidirectional emission59.

Engineered hyperuniform structures with com-
plete photonic bandgaps. The concept of disordered 
hyperuniformity4 has dramatically changed our under-
standing of the nature of randomness and order and, 
hence, provides new challenges for the development of 
sensitive order metrics. Because all perfect crystals and 
quasicrystals are hyperuniform4,41,60, hyperuniformity 
provides a unified framework to structurally charac
terize and categorize — via hyperuniformity order 
metrics4,41,60 or τ order metrics40 — crystals, quasicrys-
tals and their exotic disordered varieties. The latter are 
ideal amorphous states of matter that lie between a crys-
tal and a liquid: they are like perfect crystals in the way 
they suppress large-scale density fluctuations (Box 1), 
a special type of long-range order, and, yet, are like 

liquids or glasses in that they are statistically isotropic 
with no Bragg peaks and, hence, lack any conventional 
long-range order60. The fact that such exotic amorphous 
states of matter have characteristics of both conventional 
crystals and disordered systems endows them with novel 
thermodynamic40,61 and physical properties5,47,60,62.

Disordered hyperuniformity is, therefore, an illus-
trative example of engineered disorder for controlling 
both spectral (PBGs) and momentum (directivity) 
responses of light. This concept led to a breakthrough 
in PBG research, enabling the first disordered dielec-
tric networks with complete PBGs that were perfectly 
isotropic and comparable in size to those in photonic 
crystals47 (Table 1). In particular, stealthy hyperuniform 
patterns40,50 were used, in which the structure factor S(k) 
was zero for all wavenumbers k < K (Box 1). Figure 4a 
shows the difference between a stealthy hyperuniform 
pattern and a non-hyperuniform pattern. Disordered 
stealthy hyperuniform materials enable free-form 
waveguides with novel geometries not possible with 
photonic crystals5.

An outstanding theoretical question is whether 
finite-sized PBGs in disordered designs persist in the 
infinite-sample-size limit and what are the required 
structural conditions to ensure they do. It was argued 
that, to achieve large PBGs that do not vanish in the 
large-sample limit, stealthy hyperuniformity, com-
bined with uniform local topology and short-range 
geometric order, was necessary47. The importance of 
short-range order and hyperuniformity (rather than 
stealthiness) was also suggested for the formation of 
complete PBGs63, but relatively small systems (200 par-
ticles) were considered. Recently, it was conjectured 
that the ‘bounded-hole’ property of stealthy hyper-
uniform systems — which avoid the emergence of a 
large-sized region empty of particle centres — is crucial 
for complete PBGs in the infinite-system-size limit60, 
which is related to the increase in short-range order as 
the stealthiness increases. Following these theoretical 
results, stealthy hyperuniform patterns have enabled 
the systematic generation of complete PBGs in disor-
dered materials (Fig. 4b) and other types of spectral engi-
neering, including superior robustness and isotropy of 
stealthy hyperuniform PBGs at short wavelength5 and 
full transparency to light resistant to multiple scatter-
ing at long wavelengths62. Practical implementations of 
hyperuniform systems have been realized, mostly using 
top-down fabrication, such as direct laser writing and 
atomic layer deposition64, and, for microwave samples, 
stereolithography5 (Fig. 4b). Bottom-up fabrication of 
hyperuniform or stealthy hyperuniform structures has 
also been achieved using 3D printing for fibres65 and 
self-stabilized colloid deposition66.

Disordered families for isospectrality. Another route to 
achieving order-like spectral properties in disordered 
structures has been inspired by the classic question: 
“Can one hear the shape of a drum?”67. The sound of 
a drum is the linear combination of the tones allowed 
by the elastic membrane potential (its eigenvalues). To 
hear the shape of a drum, there should be a one-to-one 
correspondence between the potential landscape and a 

Box 2 | The concept of order metrics

To focus on the basic issues concerning order metrics, we restrict the discussion to 
systems consisting of N particles in the d-dimensional Euclidean space ℝd. Such 
many-body systems are characterized statistically by their N-body probability 
density function PN(R), which is the probability of finding the N-particle system with 
configuration R (dN-dimensional coordinate). Such complete information is virtually 
never available for large N and, in practice, one must settle for reduced information, 
such as a scalar order metric ψ. A good order metric ψ(R) should have the following 
properties: be a well-defined function sensitive to any type of ordering, without bias 
towards any reference system; provide the hierarchy of ordering between prototypical 
systems given by common physical intuition (for example, crystals, followed by 
quasicrystals, defective crystals and quasicrystals, correlated disorder without 
long-range order and, finally, uncorrelated disorder), so that, for any two configurations 
RA and RB, ψ(RA) > ψ(RB) implies that configuration RA is to be considered as more ordered 
than configuration RB; incorporate both the variety of local coordination patterns and 
the spatial distribution of such patterns; satisfy the normalization condition 0 ≤ ψ ≤ 1 
(where zero and unity indicate the least and most ordered system, respectively); and 
be able to detect translational and orientational order at any length scale. One can 
construct a useful set of order metrics ψ1, ψ2, ψ3… that are positively correlated with 
one another and, hence, lead to consistent results in classifying disorder.
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set of eigenvalues. It has been demonstrated that this is 
not the case68, as there is a one-to-many correspondence 
between a set of eigenvalues and the potential landscapes 
that can generate them: there is isospectrality between 
different potentials.

Various physical symmetries, such as translational, 
rotational and chiral symmetries, provide a straightfor-
ward set of isospectral potentials yet preserve the order 
metrics of the original potentials. However, some non-
trivial symmetries resulting in perfect isospectrality or 
quasi-isospectrality open up the possibility of tuning 
disorder while maintaining the spectral response, even 
allowing isospectral relations between ordered and 
highly disordered structures.

Isospectrality with controlled disorder can be 
realized in photonics by the supersymmetry (SUSY) 
transformation69. The SUSY transformation is math-
ematically based on the Darboux factorization of the 
Hamiltonian H, which applies to 1D potential land-
scapes. The factorization decomposes the Hamiltonian 
as H = BA, where A and B are partial operators with 
lower-order derivatives than that of H. The application 
of the partial operator A to the eigenvalue equation 
Hψn = Enψn transforms the original Hamiltonian H to a 
new SUSY Hamiltonian Hs = AB, which has a potential 
landscape with a deformed profile and preserves the 
original eigenvalues En, except for that of the ground 
state, E0 (Fig. 5a). This quasi-isospectral deformation, 
which satisfies global phase matching with the selec-
tive annihilation of an eigenmode, has been applied to 
mode-division multiplexing70 and to the stable emission 
of a fundamental lasing mode71.

The deformation of the potential landscapes in the 
SUSY transformation fulfils the condition of nontriv-
ial isospectrality. Starting from the seed potentials of 

crystals and quasicrystals, the successive application of 
SUSY transformations enables the deterministic control 
of the long-range autocorrelation of disordered poten-
tial landscapes while preserving crystal-like spectra42. 
When the Hurst exponent H is used as the order met-
ric (Table 1) — 0 ≤ H ≤ 0.5 for negative correlations and 
0.5 ≤ H ≤ 1 for positive correlations — a series of SUSY 
transformations allows the design of different disordered 
potentials with controlled correlations (0 ≤ H ≤ 0.8) for 
the same PBG42. This transformation of order to isospec-
trally engineered disorder enables the independent 
control of wave characteristics in disordered structures, 
enabling PBG structures with tunable levels of disorder 
(Fig. 5b), a disorder-induced change in the localization 
length42 (Fig. 5a and Table 1) and disordered Wannier–
Stark ladder potentials for stable Bloch oscillation72,73 
(Fig. 5c). Although the SUSY-induced deformation of 
potential landscapes generally occurs regardless of the 
size of the potential, most research efforts have focused 
on the modification of spatially localized potentials or 
arrays, including studies on complex-valued disordered 
potentials with real-valued eigenspectra74 and on the 
identical scattering between a metal–dielectric grating 
and a SUSY-deformed dielectric grating75. Further stud-
ies examining the order metric over various types of 
large-scale SUSY-transformed potentials are necessary to 
precisely control target wave properties while preserving 
the spectral response.

The SUSY transformation is a powerful tool that 
enables the solvable handling of arbitrary potential 
landscapes. However, the difficulty in factorizing multi
dimensional Hamiltonians restricts the application 
of SUSY to 1D problems, although this limit has been 
partially resolved through the separation of variables42 
or the combination of SUSY-transformed potentials76. 

Table 1 | Examples of engineered disorder

Phenomena 
controlled 
by disorder

Physics Order metric (OM) or 
design parameter (DP) of 
the degree of disorder

Target quantities

Order Uncorrelated 
disorder

Spectral 
response

Dynamical tunnelling to 
chaotic channels46

Perturbation ε of the 
microdisk radius (OM)

High-Q-factor 
resonances

Broad impedance 
matching

Stealthy hyperuniformity 
for PBG materials5

τ or hyperuniformity order 
metrics (OM)

Complete TE and  
TM PBGs

Isotropic PBGs

Isospectrality using SUSY 
transformation42

Hurst exponent H for 
long-range correlation (OM)

PBGs without defect 
states

Short localization 
length

Localization/
transport

Enhanced localization at 
sub-λ using the GH shift96

λ-normalized interval of a 
uniform distribution (OM)

Homogeneous 
effective permittivity

Angle-specific short 
localization length

Phase-conserved energy 
confinement108

Perturbation in the spatial 
amplitude (OM)

Plane-wave-like 
spatial phase

Spatially localized 
optical energy

Wavefront/
directivity

Wavefront shaping 
using disordered 
metasurfaces127

Target angular range for 
spatial phase function (DP)

Large optical 
memory effect

Large scattering 
angle

Reflectors mimicking 
Morpho butterfly wings133

Distribution of microsphere 
diameters (DP)

Narrowband 
reflection spectra

Broadband angular 
responses

Topology/
spin–orbit

Photonic topological 
Anderson insulators137

On-site disorder with 
uniform randomness (OM)

Topological edge 
states for transport

Localized bulk 
states

The table lists selected works on the underlying physics, order metrics and target wave quantities (Qp,q in the text and in Fig. 2)  
of disordered systems. For studies in which an order metric was not explicitly defined, the key design parameter that determines 
the degree of disorder is listed. GH, Goos–Hänchen; PBG, photonic bandgap; Q-factor, quality factor; SUSY, supersymmetry;  
TE, transverse electric; TM, transverse magnetic; λ, wavelength.
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In the context of dimensionality, the Householder77,78 
or Lanczos79 transformations have been studied for the 
isospectrality between structures with different dimen-
sionalities. Both transformations isospectrally remove 
far-off electromagnetic couplings for disordered optical 
structures, which enables the dimensional reduction to 
1D structures while preserving the spectral properties. 
Lossless signal transport between structures with differ-
ent dimensionality77 (Fig. 5d) and single-mode operation 
in a disordered laser array78 were demonstrated using 
the Householder transformation. Recently, the excitation 
dynamics of localization in a disordered 7D hypercube 
lattice was achieved in a 1D structure using the Lanczos 
transformation79.

Engineered localization and transport
Periodic systems with discrete translational symmetry 
conserve the Bloch momentum of waves, leading to bal-
listic wave transport. By contrast, disordered structures 
with partially or entirely broken translational symmetry 
alter the Bloch momentum state, usually degrading the 
transport efficiency and, eventually, resulting in wave 
diffusion or localization. Such disorder-induced changes 
are ubiquitous in liquids and glasses, and are at the base 
of the white colour of milk, fog and teeth.

In 1958, Phillip Anderson first demonstrated that 
a complete halt of wave transport is achieved with 
strong disorder, owing to a phenomenon now known 

as Anderson localization14. When analysing localization 
in general, the dimensionality of a system plays a critical 
role, as described by the scaling theory of localization80. 
A localized system is characterized by a specific length 
scale beyond which the state exhibits substantially sup-
pressed electron (or photon) mobility. This length scale 
is described by the scaling function β(g) (Fig. 6a), which 
represents the variation of the electronic conductance 
(or of the photon-transport efficiency), g(L), where L 
is the size of the system. Under the assumption that 
the material is homogeneous and isotropic with elastic 
scattering81 (Fig. 6b), the well-known conductance of a 
macroscopic ohmic conductor (for large g) or insulator 
(for small g) leads to the asymptotic behaviour of β(g). 
Notably, only 3D systems can provide extended states, 
offering a metal–insulator transition across β(g) = 0. 
Every 1D or 2D system eventually results in localiza-
tion, though the localization length can be controlled 
according to the system configuration.

Because photonic systems do not allow interactions 
between waves and can accommodate time-invariant 
potentials, photonic structures provide attractive plat-
forms for the observation of localization82. By exploit-
ing the mathematical analogy between the scalar form 
of the time-independent Maxwell’s equations and the 
time-dependent Schrödinger equation, the concept of 
transverse Anderson localization of light was theoret
ically proposed83. After a landmark observation of 
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microwave localization in a quasi-1D geometry84, weak 
or strong transverse localization has been experimentally  
demonstrated in various 1D85,86 or 2D87,88 photonic 
systems, in which even negligible scattering produces 
transverse localization. Among the unresolved issues is 
the experimental observation of Anderson localization 
in 3D structures, which is hindered by multiple factors, 
including insufficient material contrast, near-field effects 
and the effects of absorption89.

In this section, we discuss recent achievements 
in engineered disorder in terms of wave localization, 

focusing on two topics: engineered transverse localiza-
tion by utilizing subwavelength disorder and engineered 
diffusion or transport beyond the assumptions81 of the 
scaling theory of localization.

Transverse localization in subwavelength platforms. 
Localization arises from the interference between scat-
tered waves. Studies on localization have, thus, focused 
on features of size comparable to or larger than the 
wavelength λ, because subwavelength disorder causes 
negligible scattering with very long localization length 
(very large g in Fig. 6a). However, precision nanofabri-
cation techniques allow achieving of enhanced interfer-
ence with carefully arranged subwavelength structures 
composing scattering centres that substantially reduce 
the localization length (green and blue arrows in Fig. 6a).

One instructive example of well-arranged subwave-
length disorder for transverse localization in 2D can 
be found in nature: protein nanostructures in native 
silk produced by silkworms (Bombyx mori)90. A silk 
fibroin filament contains ~3,800 nanofibrils with a size 
of ~25 nm (Fig. 6c). Individual fibrils cannot serve as a 
scattering centre. However, owing to their statistical dis-
tributions and volume fractions, nanofibrils form clus-
ters that provide substantial scattering for λ = ~600 nm. 
Native silk, thus, exhibits transverse Anderson localiza-
tion in the visible and near-infrared regions, in contrast 
to conventional biological media, usually exhibiting 
diffusion or very large localization lengths. Because 
Anderson localization induces enhanced reflectivity in 
the corresponding spectra, native silk with high emissiv-
ity in the infrared region can be used for passive radia-
tive cooling. A similar transverse Anderson localization 
has been demonstrated in artificial fibres91,92 to realize 
focusing inside the fibre and single-mode transmission. 
The arrangement of subwavelength structures has also 
been studied in nanophotonic waveguide networks, 
achieving mirrorless lasing arising from localization and 
controlled by network connectivity93.

Although the examples above90–93 utilize subwave-
length elements, the resulting scattering centres have 
features of size comparable to (or larger than) λ, form-
ing inhomogeneous distributions of effective material 
parameters at the ~λ scale according to effective medium 
theories, such as the Maxwell–Garnett theory94. By con-
trast, for an effectively homogeneous material, it was 
believed that one cannot experimentally observe local-
ization due to a very large localization length and the 
finite size of a sample, even when the medium is highly 
disordered at the deep-subwavelength scale.

Recent studies on the failure of the effective medium 
theory95 have initiated the breaking of this traditional 
length-scale limitation in 1D geometries, achieving 
measurable transverse Anderson localization in deeply 
subwavelength structures (or homogeneous effective 
media)96. Classical studies on Anderson localization 
considered the scattering of propagating waves, which 
accumulate phase through propagation. By contrast, 
evanescent waves do not accumulate phase through 
propagation, but they accumulate phase upon scatter-
ing at the interface between different media through 
the Goos–Hänchen (GH) phase shift. Unlike the 
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distance-dependent phase accumulation of propagating 
waves, the phase accumulation through the GH shift 
occurs immediately at the material interface, without 
needing the propagation length for the phase accumu-
lation. This immediate phase accumulation leads to  
the breakdown of the effective medium theory95 and 
to the emergence of ‘interface-type’ scattering centres 
in producing sufficiently strong random scattering 
(or small g in Fig. 6a) for the observation of transverse 
Anderson localization at the deep-subwavelength scale 
(Fig. 6d). Because the GH shift is dependent on the inci-
dent angle, the deeply subwavelength disorder needed 

to realize Anderson localization in this case has a strong 
angle dependency, whereas the effective parameters 
of the system are those of a homogeneous medium. 
Disorder engineered using the GH shift, therefore, ena-
bles the independent control of the effective medium 
theory parameters and of the localization length, which 
depends on the incident angle (Table 1). This phenom-
enon was experimentally demonstrated97 by observing 
disorder-induced reflection changes in layers with a 
thickness of ~λ/40: a 2-nm structural modification could 
be sensed with localized visible light.

Engineered transport in inhomogeneous or non- 
Hermitian systems. The scaling theory80 predicts that 
all states in 1D or 2D disordered systems are eventu-
ally localized when the systems satisfy the conditions of 
homogeneity, isotropy and elastic scattering81 (Fig. 6b). 
By alleviating these conditions, extended states and 
delocalization can be realized even in 1D or 2D disor-
dered systems, as shown in studies on electronic delo-
calization in inhomogeneous98 or anisotropic99 systems. 
Alleviating the condition of elastic scattering implies 
entering the regime of non-Hermitian photonics100, 
which exploits complex-valued potentials with gain or 
loss for controlling light behaviours. Here, we focus on 
inhomogeneous and non-Hermitian systems to manip-
ulate the diffusion or transport of light. These distinct 
transport behaviours can be quantified using the diffu-
sion exponent α, which is related to the increase of the 
average squared displacement of light with time or space 
as <x2> ~ tα, where α = 2 for ballistic transport, α = 1 for 
normal diffusion and α = 0 for localization.

A typical example of an inhomogeneous material is 
a Lévy glass101, which is the structural realization of the 
Lévy flight: a random walk in which the step lengths 
have a heavy-tailed, power-law probability distribu-
tion. The spatial inhomogeneity of scatterer density in 
a Lévy glass follows the probability distribution of the 
Lévy flight. This Lévy-flight scatterer density was prac-
tically realized using glass microspheres with a diameter 
d following the power-law distribution Ps(d) ~ d−δ (with δ 
the order metric) placed inside a glass matrix with a con-
trolled spatial density of high-index (titanium-dioxide) 
nanoparticles. This Lévy glass has a scale-invariant 
structure, with elements connected by clusters of short 
steps and frequent long steps (Fig. 6e, left), analogous 
to the hub connections in scale-free networks2. Similar to 
the enhanced transport in scale-free networks2, super-
diffusive light transport (1 < α < 2) has been achieved in 
Lévy glasses102,103 with order metric δ ~ 3, which exhibit 
more strongly fluctuating transmission profiles than 
normal diffusive structures (Fig. 6e, right). In this con-
text, the relationship between a Lévy glass and a system 
with uncorrelated disorder is analogous to that between 
a scale-free and random graph in network theory. This 
viewpoint should inspire further study in disordered 
photonics towards the realization of photonic structures 
analogous to complex graph networks.

Lévy glasses and other types of systems with cor-
related disorder104 have enabled significant changes in 
wave behaviour in a given transport regime, including 
tuning the diffusion efficiency (α ~ 1) and localization 
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length (α ~ 0). The phase transition between transparent 
(α = 2) and opaque (α = 0) media, as the metal–insulator 
transition in condensed-matter physics, is only allowed 
in 3D systems. However, it would be interesting to obtain 
it also in 1D and 2D systems. In recent works, instead 
of altering all the eigenmodes of a disordered structure 
for a complete phase transition, the deterministic con-
trol of a partial set of eigenmodes has been exploited 
for practical applications. One representative example 
is non-Hermitian photonics100 with non-conserved 
energy, which corresponds to the breaking of the 
elastic scattering condition in the scaling theory81. 
For example, constant-intensity wave transport105–109 
and phase-conserved energy confinement108 (Fig. 6f) 
have been realized in disordered complex potentials. 
Such potentials are inversely designed starting from the 
prescribed target eigenmode. Therefore, an order met-
ric in these works is indirectly defined by the degree of 
disorder in the target eigenmode: the perturbation in 
the phase function for the constant-intensity transport 

and the perturbation in the amplitude function for 
the phase-conserved energy confinement (Table 1). 
These intriguing wave behaviours can be understood 
in the context of the Bohmian formulation of quan-
tum phenomena, realizing the independent control of 
the phase and amplitude of light in complex-valued 
optical potentials108, which is the main feature of engi-
neered disorder. Similar approaches for designed eigen-
modes in disordered structures have also been studied 
in Hermitian systems with the combination of diagonal 
and off-diagonal disorder106. Although the engineering 
of a partial set of eigenmodes has been applied to over-
come instabilities in lasers107 and to realize perfect trans-
port (~100%) inside disordered structures106–108, there 
is a critical restriction on the initial condition: only a 
fixed incident angle and frequency achieve the designed 
wave transport. One direction for future research is, 
then, to design the collective delocalization of multi-
ple eigenmodes, as observed in the Hatano–Nelson 
model110.
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Engineered wavefront and directivity
The controlled directivity and wavefront of scattered 
light determine optical functions in the far-field regime. 
Traditional approaches for controlling the directivity 
have primarily employed ordered structures, such as 
Bragg gratings7, photonic crystals8 and, more recently, 

metasurfaces111, and are based on the independent 
manipulation of each diffraction order of scattered light 
to achieve far-field functionalities.

By contrast, most natural structures have complex 
and turbid material configurations with inhomogene-
ous refractive index. The deterministic design of the 

3D

1D

2D

Extended: β(g) > 0

β(g) = +1

β(g) = 0

β(g) = –1

β(g) ∝ log(g)

Localized: β(g) < 0

10λ

Incident beam
Reflected beam 

Trapped by disorderd = λ/1,000 layers

a

c e

d f

b

0

β

Homogeneous, isotropic
and elastic

Inhomogeneous Anisotropic Inelastic

100 nm

Nanofibril Scattered
wave

Incident
wave

Silk filament

Lévy transport

Diffusive transport

2.4

2.2
1
0
–1

2
0
–2

Re(ε) E
z

Im(ε)

log(g)

+

Fig. 6 | Controlled localization and transport in engineered disordered 
systems.  a  |  Qualitative behaviours of the scaling function 
β(g) = dlog(g)/dlog(L), where L is the size of the system. The metal–insulator 
transition (yellow dot) occurs only in 3D. The red dashed line denotes the 
ongoing effort to search for 3D Anderson localization. The green and blue 
arrows represent the engineering of 2D and 1D transverse localization, 
respectively. b | The scaling theory assumes homogeneity, isotropy and elastic 
scattering81. The alleviation of these conditions (arrows) enables extended 
states even with 1D or 2D disorder. The red and blue dots in the inelastic panel 
denote gain and loss elements, respectively. c | 2D transverse Anderson 
localization in a single silk filament made of nanofibrillar structures, the yellow 
translucent cylinders in the illustration and dark granule-like dots in the real 
structure90. For incident and scattered waves (yellow and dark-purple lines), 
scattering centres in the filament induce constructive interference (red line). 
d | 1D transverse Anderson localization with extremely deep-subwavelength 
disorder96. The multilayer stack is composed of alternating dielectric layers 
with permittivities εLow = 1 and εHigh = 5. The thickness of each layer is between 
2 nm and 18 nm, and is determined by a uniform random distribution. An order 

metric is defined by the ratio between the uniform distribution interval 
(16 nm) and the optical wavelength. For oblique incidence (~60°), the Goos–
Hänchen shift plays an important role, as it induces phase accumulation and 
localization, despite the deep-subwavelength length scales: the layer is, on 
average, 10 nm thick, whereas the wavelength is 10 μm. e | Lévy flight in an 
inhomogeneous medium. Left: red lines for Monte-Carlo-simulated 
random-walker trajectory show the frequent emergence of long steps. The 
magnification in the inset shows the scale invariance of the structure. Right: 
spatial distributions of the transmitted intensity obtained from two different 
realizations of disorder for a Lévy glass (top) and for a normal diffusive sample 
(bottom). Although a normal diffusive sample results in nearly constant spatial 
distributions, a Lévy glass exhibits a large difference between different 
realizations. f | A disordered, complex-valued optical structure that achieves 
phase-conserved energy confinement108. Panel c reprinted from ref.90, CC BY 
4.0 (https://creativecommons/org/licenses/by/4.0/). Panel d reprinted from 
ref.96, CC BY 4.0 (https://creativecommons/org/licenses/by/4.0/). Panel e 
adapted from ref.101, Springer Nature Limited. Panel f reprinted from ref.108, 
CC BY 4.0 (https://creativecommons/org/licenses/by/4.0/).

www.nature.com/natrevmats

R e v i e w s

236 | March 2021 | volume 6	



directivity and wavefront of light interacting with dis-
ordered structures is, thus, challenging, especially for 
biomedical applications, such as the focusing of electro-
magnetic energy on a target location inside the human 
body112. The most common approach consists in using 
wavefront-shaping techniques113,114, which are based on 
the optimization of the impinging wavefront to achieve 
designed constructive interference at a target position. 
Disordered structures in nature have also inspired the 
engineering of functional far-field phenomena, such as 
structural colours20, omnidirectional antireflection115 
and perfect absorption116. This section introduces recent 
achievements, focusing particularly on engineered dis-
order for wavefront shaping and engineered disorder 
inspired by biological structures.

Engineered disorder for wavefront shaping. Biological 
structures are naturally disordered media. Although 
scattering inside static and lossless media does not result 
in an irreversible loss of information117, the coherence, 
directivity and focusing of incident light are usually 
destroyed, hindering functional responses inside tur-
bid media. After the first realization of designed focus-
ing through disordered media113 and its generalization 
through the measurement of the transmission matrix114, a 
wavefront-shaping technique113,114,118 has been developed 
that modifies the spatial profile of light with a spatial 
light modulator (SLM) to achieve optical functionalities 
through or within disordered structures. This technique 
has been extended to include the utilization of spatio-
temporal degrees of freedom112 and guidestar-assisted 
methods119 for biomedical applications, including opto-
genetic neuron controls and deep-tissue imaging. The 
theoretical background underpinning wavefront shaping 
based on mesoscopic-scattering theory was rigorously 
described in the review article in ref.120.

Owing to the mechanism underlying wavefront 
shaping — interactions between modulated light and dis-
ordered matter — the engineering of disorder has been 
sought in two ways: engineering the modulated light or 
the disordered structures. In analogy to anomalously 
large conductance fluctuations of electron transport in 
systems with mesoscopic structural correlations121, the 
effect of long-range correlations in the wavefront-shaping 
transmission matrix was investigated for targets larger 
than a single speckle122. In examples of target focusing or 
defocusing through disordered media (Fig. 7a), the range 
of control on the total transmitted flux into the focal tar-
get is substantially enhanced by using SLM-modulated 
light. This enhancement originates from the long-range 
correlation between transmission-matrix elements, 
which is obtained from the optimized ‘wavefront’ 
(or engineered disorder in light, Fig. 7b).

Wavefront shaping has also been used in disor-
dered ‘platforms’ to enhance optical functionalities, 
for example, to make lenses with high numerical aper-
ture (NA). In line with results in ultrasound123 and 
microwave124 platforms, disordered structures have 
been exploited118,125,126 to increase the NA in light focus-
ing, obtaining a resolution 5–10 times better than the 
diffraction limit118,125, enabling sub-100-nm resolution 
with visible light126.

Building upon these results in systems with ran-
domly assigned disorder118,123–126, engineered disorder 
was recently introduced through disorder-engineered 
metasurfaces127 (Fig. 7c), which break the limitation in 
spatial frequencies that, in an SLM, is imposed by the 
pixel pitch, d. Indeed, these metasurfaces give access to 
much higher spatial frequencies than those afforded by 
conventional SLM methods, as ν ≤ (1/λ), in contrast to the 
SLM limit ν ≤ 1/(2d) (usually, d >> 10λ). The higher fre-
quencies allow for an increase in the number of address-
able focal spots. These disorder-engineered metasurfaces 
were designed through the optimization of the spatial 
phase function using the Gerchberg–Saxton algorithm, 
to yield an isotropic scattering profile over the target 
angular range. Although a specific order metric was not 
estimated for the metasurfaces, their degree of disorder 
was determined by the target angular range (Table 1).

Disorder-engineered metasurfaces127 also display 
a superior optical memory effect (Fig. 7d). This effect 
arises from the scattering-based correlation between the 
changes in the input and output wavefront, allowing for 
the manipulation of the output wavefront with the mod-
ulated input. Although this correlation is usually sepa-
rated in a ‘tilt’ (ref.128) and a ‘shift’ (ref.129) function for 
the momentum and spatial perturbation of light, respec-
tively, recent work130 proved that these two components 
are interrelated. In conventional 3D disordered media, it 
is difficult to achieve a large memory effect with a wide 
angular scattering range, because a thick sample has 
a wide angular profile130, which results in a decreased 
memory effect. By contrast, a disorder-engineered 
metasurface127, whose meta-atoms have resonances with 
low angular sensitivity, results in an angular correlation 
(or memory effect) range of ~30°, much more extensive 
than that of conventional disordered media (<5°), while 
maintaining a large scattering angle (~90°). This results 
in a high NA and stable focusing that can be used for 
imaging in biomedical applications (Fig. 7c).

Biomimetic engineering. The effort to engineer disor-
dered systems to mimic biological structures has pro-
vided insight into the control of far-field functionalities 
of light, in particular, for the reproduction of structural 
colours, such as those produced by photonic nanostruc-
tures with short-range order found in the feathers of 
birds20. For example, it was revealed that the white colour 
of white beetles originates from the network morphol-
ogy of the wing scales131. The intriguing role of disorder 
in floral-grating-like structures, such as the angiosperm 
Hibiscus trionum, was also studied132, demonstrating that 
the generation of visual signals from angle-dependent 
scattering at striated flower surfaces (Fig.  7e, top) 
strongly depends on the level of disorder at the length 
scales corresponding to ultraviolet and blue wavelengths. 
The resulting iridescent optical signals are noticeable to 
bees, proving the role of structural disorder in biologi-
cal functions. ‘Artificial flowers’ made of nanoscale grat-
ing structures (Fig. 7e, bottom) were created based on 
engineered disorder and shown to produce a photonic 
signature that is highly attractive to insect pollinators.

The Morpho didius butterfly is another example 
of the use of functional disorder in nature. It displays 

NaTure RevIeWS | MATERIALS

R e v i e w s

	  volume 6 | March 2021 | 237



both a vivid blue colour and wide angular reflections. 
The coexistence of crystal-like narrowband spectral 
information and disorder-like broadband angular 
responses originates from the structural combination 
of order and disorder133 (Fig. 7f, left), embodied in the 

quasiperiodicity of the multilayers in a unit cell and their 
in-plane random distribution. This structural configu-
ration was reproduced in silicon-based nanophotonic 
platforms (Fig. 7f, right and bottom)133, with alternat-
ing silicon-dioxide and titanium-dioxide layers on a 
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Fig. 7 | Shaped wavefront and controlled directivity obtained with 
engineered disorder. a | Maximal (top) and minimal (bottom) transmission 
into a target region containing 1,700 speckles, obtained by optimizing the 
light’s wavefront122. The colour of the square on the corner of each image 
indicates the average intensity inside the target. b | The enhanced range of 
control obtained by controlling correlations122. For large targets (with a 
number of channels M2 ≥ 103), the range of control, as characterized by 
the variance of the eigenvalues of the transmission matrix, substantially 
increases. The illumination spot size is 6 μm. c | Broadband wavefront 
shaping assisted by disorder-engineered metasurfaces127. The insets show 
the application of this strategy to the high-resolution fluorescence 
imaging127 of Giardia lamblia cysts, presenting a metasurface-assisted 
image (top), a ground-truth image with a 20× objective lens (middle) and  
an image with a 4× objective lens (bottom). d | Optical memory effect. The 
change of the input wavefront (from Ψ(rI) to Φ(rI) at the position rI) leads  
to a correlated change in the output wavefront (from Ψ(rT) to Φ(rT) at  
the position rT). This correlation can be calculated by using the original and 
changed transmission matrices130. e | The angiosperm Hibiscus trionum: the 

flower (left), a scanning electron microscopy (SEM) image (middle) and a 
transmission electron microscopy image (right). A flower-mimetic 
disordered grating with two height levels is shown in the lower part of the 
panel132. f | Morpho didius butterfly and its artificial realization: SEM images 
of a butterfly wing (left) and of a sample with engineered disorder mimicking 
it (right), and pictures of the resulting films encased in polydimethylsiloxane 
realizing different colours, depending on the vertical periodicities (bottom). 
The blue film is shown next to M. didius for comparison133. g | Chorinea 
faunus butterfly and its artificial realization: photo of a C. faunus butterfly 
under visible light (left); SEM image of the bio-inspired nanostructures 
(middle), with the inset showing the ring-shaped 2D Fourier power 
spectrum, which indicates a short-range order with a mean period of 
445 ± 60 nm; and the application of the transparent film in an in vivo 
intraocular pressure sensor (right)134. SLM, spatial light modulator. Panels a 
and b are adapted from ref.122, Springer Nature Limited. Panel c reprinted 
from ref.127, Springer Nature Limited. Panel e reprinted from ref.132, Springer 
Nature Limited. Panel f reprinted with permission from ref.133, Wiley. Panel g 
reprinted from ref.134, Springer Nature Limited.
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monolayer of silica microspheres. The random distri-
bution of the silica microspheres imposes a 3D random 
perturbation on the alternating layers while preserving 
the periodicity along the deposition axis (Table 1). These 
biomimetic structures exhibit superior colour quality 
compared with natural butterflies.

Recently, the wing of the Chorinea faunus butterfly 
was studied for the design of transparent disordered 
films134 (Fig. 7g, left). In the butterfly, the transparent 
colour is due to nanostructures with short-range order, 
which provided the inspiration for a disordered film 
with low aspect ratio, isotropic scattering and enhanced 
omnidirectional transmission for the in vivo sensing of 
intraocular pressure (Fig. 7g, middle and right). Finally, 
the wing-scale structure of the butterfly Pseudolycaena 
marsyas was investigated135 by quantifying its internal 
structural similarity to a random network, revealing 
that substantial amorphous gyroid microstructures 
play a critical role in determining the reflection spec-
trum. Apart from mimicking functionalities found in 
nature, an important focus of this type of research is 
understanding whether a certain biological structure 
produced by evolution is the optimized solution for a 
target functionality.

Disordered topological photonics
The use of topological concepts, which describe prop-
erties that are invariant under continuous deforma-
tions of a mathematical or physical object, has provided 
new design principles in condensed-matter physics, 
photonics, acoustics, microwaves and cold atoms. 
In photonics, the investigation and utilization of the 
topology of the dispersion bands has become a major 
research focus10, with the aim of achieving topologically 
protected modes. Because the topology-dependent prop-
erties of these modes, such as the propagation direction, 
are protected against continuous deformations of the 
system, several exotic phenomena have been observed in 
photonic topological systems, including disorder-robust 
light propagation and photonic spin–orbit interactions.

Traditional research in disordered photonics has 
focused on classical optical quantities: frequencies, 
transport, wavefront and directivity of light. In line with 
the recent attention on topological quantities10, disor-
dered photonics have yielded new design methodologies 
that produce geometric or topological properties and 
spin or orbital angular momenta of light in the unex-
plored regime of broken translational order. In this sec-
tion, we introduce recent reports on engineered disorder 
that interacts with the topological properties of light, 
including the effect of weak disorder on photonic topo-
logical insulators (TIs), the utilization of strong disorder 
for photonic topological Anderson insulators (TAIs) and 
spin–orbit interactions in disordered structures.

Weak disorder in photonic topological insulators. 
Photonic TIs enable backscattering-free light guiding by 
exploiting the topological nature of their eigenmodes. 
To generalize defect-immune light behaviours of TIs, 
detailed studies of the connection between disordered 
photonics and topological photonics are necessary, 
such as the manipulation of topological properties by 

engineering the strength and pattern of disorder136,137. 
However, the study of topology in disordered platforms 
has suffered from the lack of a proper topologically 
invariant quantity, because the widely used quan-
tity, the Chern number, usually requires well-defined 
band structures with the closed Brillouin zone of 
periodic systems.

The effect of weak disorder, which preserves the 
bandgaps of TIs, has been investigated in photonic TIs. 
Disorder-induced topological transitions were studied 
in photonic metamaterials136. Although robust surface 
states with backscattering-free transport were observed 
for fluctuations of the optical potentials of up to 60%, 
a sudden topological transition accompanied by the 
emergence of localized hot spots was also revealed, 
which originates from Anderson localization (Fig. 8a). 
In this work, an empirical parameter measuring the 
confinement of surface states near the topological inter-
face was used to identify the abrupt topological tran-
sition according to the increase of disorder strength. 
This empirical parameter was also used in recent work 
on topological states in amorphous photonic lattices138, 
which demonstrated topological protection in pho-
tonic structures with short-range order. Assuming a 
very weak level of disorder, the concept of perturbative 
metamaterials139 was suggested for the systematic design 
of TIs (Fig. 8b), resulting in the emergence of topological 
surface phonons.

In future work, it will be worth paying attention to the 
lifting of the restrictions on the Chern number afforded 
by its generalized definition first suggested by Kitaev140. 
This generalized quantity is constructed with the projec-
tion operator that describes the vibrations of the system, 
allowing for the real-space quantification of topological 
invariants. The proposed method has been applied to the 
realization of TIs in amorphous structures141,142 and will 
accelerate the connection between disordered photonics 
and topological photonics.

Strong disorder for photonic topological Anderson insu-
lators. The effect of strong disorder on TIs, almost clos-
ing the bandgaps, has drawn attention to the photonic 
realization137,143 of TAIs144. Exposing the dramatic impact 
of topology on disordered photonics, the realization of 
a TAI implies the transition from an insulating state to a 
state with quantized conductance through the inclusion 
of sufficiently strong impurities in a 2D material. In con-
trast to an ordinary Anderson insulator that exhibits a 
monotonically suppressed conductance with increasing 
disorder, a TAI displays a disorder-induced emergence 
of the conductance145. The TAI conductance is also 
distinct from the protected conductance of a TI in the 
presence of disorder.

Effective lattices for the dynamical realization of TAIs 
were proposed143 (Fig. 8c). First, the application of a 
time-varying gauge field to a honeycomb lattice leads 
to a bandgap with topologically protected edge states, 
forming TIs with time-reversal symmetry breaking. 
Then, with the subsequent breaking of inversion sym-
metry with detuned sublattices in the form of a staggered 
potential (red and green colouring in Fig. 8c), the band 
structure becomes topologically trivial. The introduction 
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of strong on-site disorder (different radii in Fig. 8c) then 
suppresses this inversion-symmetry breaking, recover-
ing a topologically nontrivial phase and, thus, achieving 
gapless edge modes. A TAI was experimentally demon-
strated in a static photonic platform using an array of 
helical coupled waveguides with on-site disorder137 
(Fig. 8d). The enhanced transport through edge modes 
and the short localization length of the bulk modes in 
photonic TAIs (Table  1) show how the interaction 
between disorder and topology provides new design 
freedom in the field of engineered disorder.

Spin–orbit interactions in disordered photonics. The 
impact of disorder on another topological phenomenon, 
spin–orbit interactions, was investigated in photonic 
metasurfaces146. The employed metasurface comprised 
subwavelength nanoantennas with random orientations 
θ ranging from –επ/2 to επ/2, where ε is the disorder 
strength (Fig. 8e). Because the orientation of each nano-
antenna contributes to the geometric phase stemming 
from polarization change147, the metasurface composes a 
subwavelength-scale, disordered-geometric-phase struc-
ture. By increasing the strength of disorder, a transition 
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from a photonic spin Hall effect of spin splitting within 
a diffraction-limited area to a random optical Rashba 
effect with numerous spin-split modes was observed 
in momentum space. This configuration results in 
spin-symmetry breakdown Iσ+(k) ≠ Iσ−(k) (where Iσ±(k) is 
the measured momentum-space intensity of each spin), 
which is in contrast with expectations based on the 
effective medium theory. Recently, an extension of these 
results was reported by inserting random local deforma-
tions in the metasurface structures148. With high defect 
concentrations, a random Rashba effect was reported. 
By contrast, low defect concentrations led to a photonic 
analogue of the topological Hall effect, originating from 
a pair of singularities in the pseudo-magnetic field.

Outlook
We have reviewed cornerstones in the field of engi-
neered disorder, which have enabled the independent 
and traditionally contradictory control of multiple wave 
quantities. As evidenced by the recent results summa-
rized in this Review, engineered disorder extends the 
‘dimensionality’ of design freedom for controlling wave 
quantities through distinct paths of light–matter inter-
actions. Traditional research in disordered photonics has 
focused on ‘1D’ design freedom: the control of a single 
wave quantity, such as bandgaps, localization length or 
angular spectra. By contrast, a set of wave quantities and 
their interactions with disordered structures have trans-
formed the problem into a multifaceted one. Although 
most recent results have focused on the 2D design space, 
as described in Fig. 2 and Table 1, higher-dimensional 
degrees of freedom from multiple interrelated wave 
quantities will give access to more intriguing optical 
phenomena through the precise engineering of each 
optical quantity and their mixing.

On the theoretical side, interdisciplinary concepts 
inspired by related fields, such as hyperuniformity60, 
chaos theory53 and the de Broglie–Bohm theory108, 
have provided a new perspective on the determin-
istic engineering of optical disorder. The regime of 

‘uniformity’ is statistically generalized with the concept 
of hyperuniformity, grouping crystals, quasicrystals, 
aperiodic sequences and correlated disorder under a 
single umbrella. Chaotic channels enable a substantial 
increase in the optical path lengths in a given space, 
allowing for integrated photonic devices in disordered 
platforms. Bohmian formulations tackle the individ-
ual handling of wave phase and amplitude in complex 
optical potentials, connecting disordered photonics and 
non-Hermitian photonics. In addition, the concepts of 
synthetic dimensions149 and time crystals150 in ordered 
systems will provide vast and new regimes to explore in 
disordered photonics.

Recently developed fabrication and optimization 
techniques have enabled the realization of target disor-
dered patterns. Extreme nanofabrication technologies151 
allow the precise and large-scale generation of engineered 
disordered patterns with top-down5,64 or bottom-up65,66 
processes, such as the construction of hyperuniform 
structures using photolithography and 3D printing52. 
Self-assembly techniques also enable the precise con-
trol of short-range order in disordered structures, and 
have been applied to obtain enhanced Purcell factors in 
spontaneous emission152 and tunable random lasing153. 
Machine-learning techniques154–156, enabling the system-
atic modelling of the relationship between various wave 
quantities and their mixing in Maxwell’s equations, are 
promising choices for the efficient numerical modelling 
of disordered light–matter interactions, as was shown in 
solid-state physics156,157. Conversely, because neural net-
works are correlated disordered systems with nonlinear 
activations, we can envisage the construction of complex 
optical networks composed of delicately engineered dis-
ordered structures with optical nonlinearity to improve 
the current light-based machine-learning process158. The 
exploration of the potential of disordered photonics has 
just begun and promises a variety of breakthroughs in 
both science and engineering.
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