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The hyperuniformity concept provides a unified means to classify all perfect crystals, perfect quasicrystals,
and exotic amorphous states of matter according to their capacity to suppress large-scale density fluctuations.
While the classification of hyperuniform point configurations has received considerable attention, much less
is known about the classification of hyperuniform two-phase heterogeneous media, which include composites,
porous media, foams, cellular solids, colloidal suspensions, and polymer blends. The purpose of this article is to
begin such a program for certain two-dimensional models of hyperuniform two-phase media by ascertaining
their local volume-fraction variances σ 2

V
(R) and the associated hyperuniformity order metrics BV . This is a

highly challenging task because the geometries and topologies of the phases are generally much richer and more
complex than point-configuration arrangements, and one must ascertain a broadly applicable length scale to make
key quantities dimensionless. Therefore, we purposely restrict ourselves to a certain class of two-dimensional
periodic cellular networks as well as periodic and disordered or irregular packings of circular disks, some of
which maximize their effective transport and elastic properties. Among the cellular networks considered, the
honeycomb networks have minimal values of the hyperuniformity order metrics BV across all volume fractions.
On the other hand, for all packings of circular disks examined, the triangular-lattice packings have the smallest
values of BV for the possible range of volume fractions. Among all structures studied here, the triangular-lattice
packing of circular disks have the minimal values of the order metric for almost all volume fractions. Our study
provides a theoretical foundation for the establishment of hyperuniformity order metrics for general two-phase
media and a basis to discover new hyperuniform two-phase systems with desirable bulk physical properties by
inverse design procedures.

DOI: 10.1103/PhysRevE.103.012123

I. INTRODUCTION

The hyperuniformity concept generalizes the traditional
notion of long-range order in many-particle systems to in-
clude all perfect crystals, perfect quasicrystals, and exotic
amorphous states of matter [1,2]. A hyperuniform point
configuration in d-dimensional Euclidean space Rd is char-
acterized by an anomalous suppression of large-scale density
fluctuations relative to those in typical disordered systems,
such as liquids and structural glasses. The hyperuniformity
notion was generalized to the case of heterogeneous (mul-
tiphase) materials [3–5], i.e., materials consisting of two
or more phases [6,7], such as composites, porous media,
foams, cellular solids, colloidal suspensions and polymer
blends. Subsequently, the concept was extended to quantify
hyperuniformity in a variety of different systems, including
random scalar fields, divergence-free random vector fields,
and statistically anisotropic many-particle systems [4]. Hype-
runiformity has been attracting great attention across many
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fields, including physics [2,8–21], materials science [22–26],
mathematics [27–31], and biology [2,32–34].

In the case of point configurations, one can rank order
crystals, quasicrystals, and special disordered systems within
a hyperuniformity class according to the degree to which they
suppress density fluctuations, as measured by the hyperuni-
formity parameter BN [1,3]. Much less is known about the
analogous rank ordering of hyperuniform two-phase media
via the corresponding hyperuniformity parameter BV , as de-
fined below. However, it is much more challenging to do so
for two-phase media for two reasons. First, the geometries and
topologies of the phases are generally much richer and more
complex than point-configuration arrangements. Second, one
must determine length scales that are broadly applicable for
the multitude of possible two-phase media microstructures
to make BV dimensionless. The purpose of this article is to
begin such a program for certain two-dimensional periodic
and disordered models of two-phase media.

For two-phase heterogeneous media in d-dimensional Eu-
clidean space Rd , which include cellular solids, composites,
and porous media, hyperuniformity is defined by the fol-
lowing infinite-wavelength condition on the spectral density
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χ̃V (k) [2,3], i.e.,

lim
|k|→0

χ̃V (k) = 0, (1)

where k is the wave vector. The spectral density χ̃V (k) is
the Fourier transform of the autocovariance function χV (r) ≡
S(i)

2 (r) − φi
2, where φi is the volume fraction of phase i and

S(i)
2 (r) gives the probability of finding two points separated by

r in phase i at the same time [6,7]. This two-point descriptor
can be easily obtained for general microstructures either theo-
retically, computationally, or via scattering experiments [35].
Hyperuniformity of two-phase media can be defined in terms
of the local volume-fraction variance σ 2

V (R) associated with
a spherical window of radius R. Specifically, a hyperuniform
two-phase system is one in which σ 2

V (R) decays faster than
R−d in the large-R regime [2,3], i.e.,

lim
R→∞

Rd σ 2
V (R) = 0. (2)

In addition to having a direct-space representation [36], the
local variance σ 2

V (R) has the following Fourier representation
in terms of the spectral density χ̃V (k) [2,3]:

σ 2
V (R) = 1

v1(R) (2π )d

∫
Rd

χ̃V (k) α̃2(|k|; R) dk, (3)

where v1(R) = πd/2[�(d/2 + 1)]−1Rd is the volume of a d-
dimensional sphere of radius R, �(x) is the gamma function,
and

α̃2(|k|; R) ≡ 2dπd/2 �(d/2 + 1)
[Jd/2(|k|R)]2

|k|d , (4)

is the Fourier transform of the scaled intersection volume of
two spheres of radius R that are separated by r [1].

As in the case of hyperuniform point configurations
[1–3,37], there are three different scaling regimes (classes)
that describe the associated large-R behaviors of the volume-
fraction variance when the spectral density goes to zero as a
power-law scaling χ̃V (Q) ∼ |Q|α as Q tends to zero:

σ 2
V

(R) ∼
⎧⎨
⎩

R−(d+1), α > 1 (Class I)
R−(d+1) ln R, α = 1 (Class II)
R−(d+α), 0 < α < 1 (Class III)

, (5)

where the exponent α is a positive constant. Classes I and
III are the strongest and weakest forms of hyperuniformity,
respectively. One aim of this paper is to compute the im-
plied coefficient hyperuniformity order metric BV (defined in
Sec. II A) multiplying R−(d+1) for certain class I structures,
which is a measure of the degree to which large-scale volume-
fraction fluctuations are suppressed within that class.

An overarching goal of this paper is to begin to characterize
the hyperuniformity of certain models of two-phase media
that belong to class I. Due to the infinite variety of possible
two-phase microstructures (geometries and topologies), we
purposely restrict ourselves to a certain class of periodic cel-
lular networks as well as periodic and disordered or irregular
packings, some of which maximize their effective transport
and elastic properties (Sec. IV). Even this restrictive set of
models of two-phase media presents challenges, since one
must ascertain relevant length scales that are broadly appli-
cable to make key quantities dimensionless, as discussed in

Sec. VI. In particular, we evaluate the volume-fraction vari-
ance as a function of the window radius R for all models.
We also compute the aforementioned hyperuniformity order
metric BV for each model to rank order them.

In Sec. IV, we present relevant theoretical background to
characterize hyperuniform two-phase media and describe the
computational methods employed in this study. In Sec. III,
we provide exact closed-form formulas of the form factors
of general polyhedra in R2 and R3, which are important
to characterize periodic networks. We then describe the
two-dimensional models of two-phase media of class I hyper-
uniformity considered in this investigation: periodic cellular
networks (Sec. IV), periodic disk packings, and disordered
or irregular disk packings (Sec. V). In Sec. VI, we provide
the rationale for choosing the inverse of the specific surface
as the characteristic length scale D in the hyperuniformity
order metric BV . In Sec. VII, we investigate the microstructure
dependence of the volume-fraction variance and rank order all
of our class I models according to BV . Finally, we present con-
cluding remarks and outlooks for future research in Sec. VIII.

II. BACKGROUND AND METHODS

A. Asymptotic analysis of hyperuniform two-phase media

For a statistically homogeneous two-phase medium in Rd ,
the local volume-fraction variance σ 2

V (R) can be written as the
following large-R asymptotic expansion [2,3]:

σ 2
V (R) = AV (R)

(D

R

)d

+ BV (R)
(D

R

)d+1

+ o
(D

R

)d+1

, (6)

where AV (R) and BV (R) are dimensionless asymptotic coeffi-
cients of powers R−d and R−(d+1), respectively, and they are
defined by

AV (R) = 1

v1(D)

∫
|r|�2R

χV (r) dr, (7)

BV (R) = − c(d )

2D v1(D)

∫
|r|�2R

χV (r) |r|dr, (8)

where c(d ) ≡ 2 �(d/2 + 1) /{π1/2�[(d + 1)/2]}, and D is a
characteristic length scale of the medium. In the large-R limit,
the coefficient AV (R) is proportional to the spectral density at
the origin, i.e.,

AV ≡ lim
R→∞

AV (R) ∝ lim
|k|→0

χ̃V (k) , (9)

and thus for any hyperuniform medium, AV = 0, and hence
the expansion (6) reduces to

σ 2
V (R) = BV (R)

(D

R

)d+1

+ o
(D

R

)d+1

. (10)

It is noteworthy that, unlike σ 2
V (R), the coefficient BV (R)

depends on the choice of the length scale D.
In the case of class I hyperuniform systems, σ 2

V (R) decays
like R−(d+1) for large R, as specified by

σ 2
V (R) ∼ BV

(D

R

)d+1

, R → ∞. (11)

As R increases, the coefficient BV (R) converges to the hype-
runiformity order metric BV for typical disordered systems.
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For some infinite media, such as periodic and aperiodic struc-
tures,the associated coefficient BV (R) oscillates around some
running average value. In such cases, it is advantageous to es-
timate BV by using the cumulative moving average, as defined
by [2]

BV ≡ lim
L→∞

1

L

∫ L

0
BV (R) dR. (12)

B. Spectral density and the local volume-fraction variance

Here we present explicit formulas for the spectral density
χ̃V (k) of general packings in Rd , ordered or not [2,38,39].
We also describe the formula for the local volume-fraction
variance σ 2

V (R) for class I hyperuniform two-phase media and
the associated hyperuniformity order metric BV . Importantly,
these formulas also can be applied to characterize periodic
cellular networks, as we will discuss later.

In the case of packings of identical particles P of arbitrary
shape, it is known that

χ̃V (k) = ρ|m̃(k; P)|2 S(k) , (13)

where ρ is the number density of particle centers, m̃(k; P)
is the Fourier transform of (also called form factor) of the
particle indicator function m(x; P) defined by

m(x; P) =
{

1, x is inside P
0, otherwise , (14)

where x is the position vector with respect to the centroid
of P, and S(k) is the structure factor of particle centers; see
Refs. [2,38,39] for the definition of S(k) and its computation.
One can immediately obtain from (13) the specific formulas
for a d-dimensional (Bravais) lattice packing in which a single
particle P is placed in a fundamental cell F of the Bravais
lattice L as follows:

χ̃V (k) = |VF |−1|m̃(k; P)|2 SL(k) , (15)

where |VF | is the volume of the fundamental cell F of L,
SL(k) is the structure factor of L given by [2]

SL(k) = (2π )d

|VF |
∑

q∈L∗\{0}
δ(k − q) , (16)

L∗ denotes the reciprocal lattice of L, and δ(x) is the Dirac
delta function. For a periodic packing in which a fundamental
cell contains M distinct particles (P1 , . . . , PM) whose cen-
troids are at r1, . . . , rM , formula (15) can be easily extended
as

χ̃V (k) = |VF |−1|m̃(k; {P j})|2 SL(k) , (17)

where

m̃(k; {P j}) ≡
M∑

j=1

m̃(k; P j ) e−ik·r j . (18)

Equation (17) is a special case of the multicomponent packing
formula given in Ref. [39]. Thus, given the form factors and
structure factors for a particulate two-phase structure, one can
immediately compute the corresponding spectral density via
(13), (15), or (17). It is crucial to note that these formulas also
can be applied to any periodic cellular network by treating it as

a periodic packing of polygons (polyhedra for d = 3) defined
by the void regions (shown in white in Fig. 3). In such cases,
the set {P j} represents the regions of void phase (shown in
white regions in Fig. 3).

Given the spectral density of a general packing, one can
compute the local volume-fraction variance by computing
Eq. (3) either numerically or analytically. The associated hy-
peruniformity order metric BV is obtained from the running
average associated with (12). In the case of periodic packings
or periodic networks, it immediately follows from Eqs. (3) and
(17) that the associated local volume-fraction variance σ 2

V (R)
and the surface-area coefficient BV (R) are written as

σ 2
V (R) = 2d �(d/2 + 1)2

Rd

1

|VF |2

×
∑

k∈L∗\{0}
|m̃(k; {P j})|2 [Jd/2(kR)]2

kd
, (19)

∼ BV (R)
(D

R

)d+1

, (R → ∞). (20)

Thus, we see that periodic packings fall in class I. The hype-
runiformity order metric BV is obtained by substituting (20)
into (12):

BV = 2d �(d/2 + 1)2

πDd+1

1

|VF |2
∑

k∈L∗\{0}

|m̃(k; {P j})|2
qd+1

, (21)

where we have used the identity
limx→∞ x−1

∫ x
0 dx′ x′[Jd/2(x′)]2 = 1/π .

C. Computation of σ2
V (R) and BV

Here we describe two methods that we employ to estimate
the local volume-fraction variance σ 2

V (R) and the associated
asymptotic value BV : Numerical integration of Eq. (3) and the
Monte Carlo (MC) method. For periodic media, we mainly
use the former method because of its accuracy and efficiency
for such structures [cf. Eq. (20)]. The key step of this method
is to compute the spectral density χ̃V (k) of a periodic structure
via either (15) and (17). For periodic packings of identical
circular disks, we use the exact formula for the form factor of
a d-dimensional sphere of radius a given by [6]

m̃(k; a) =
(

2πa

k

)d/2

Jd/2(ka). (22)

In the case of periodic networks, we employ the formulas
for general polyhedra in two and three dimensions given in
Sec. III. Provided that χ̃V (k) given in Eq. (17) can be com-
puted, it is in practice sufficient to perform the summations in
Eqs. (20) and (21) up to |k||VF |1/d < 1000 for d = 2, 3.

Because the numerical calculations of (3) can be compu-
tationally expensive, we employ the MC method to estimate
σ 2

V (R) for disordered disk packings. Specifically, σ 2
V (R) is

estimated by uniformly sampling the local volume fraction
with a d-dimensional spherical observation window of radius
R a single packing or an ensemble of packings. Since this
method involves computing the volume of domains in one
phase intersected by a window, it is highly nontrivial and
computationally expensive for general packings. In the case
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FIG. 1. Illustrations of parameters used to compute the form
factors of polygonal figures in R3. (a) A pentagon has a face �

surrounded by five vertices V1, . . . , V5. The vertex indices increase
counterclockwise when the normal vector n̂ is toward the reader.
(b) A polyhedron with five faces, for each of which the ordering of
vertices fulfills the right-hand rule with the normal vector n̂ j . Note
that all normal vectors point toward the outside of the polyhedron.

of disk packings (sphere packings for d = 3), however, such
a calculation can be efficiently carried out by using an ex-
act closed-form formula for the intersection volume of two
spheres of radii R1 and R2 whose centers are separated by r,
given in Ref. [6].

III. FORM FACTORS OF POLYGONS AND POLYHEDRA

In order to compute the spectral density of a periodic
cellular network using relation (17), one needs to compute
the form factors of the relevant polyhedra. Here we provide
the exact closed-form formulas for general polyhedra in three
dimensions and two dimensions (polygons) that were derived
in Ref. [40].

We first consider a planar polygon � that is placed in an
arbitrary orientation in R3 [see Fig. 1(a)] and consists of J
vertices V1, . . . , VJ in a cyclic order, implying that the ad-
jacent vertices Vi−1 and Vi are connected by a segment, and
VJ+1 = V1. It is convenient to consider a planar polygon in
three dimensions since such planar polygons will be employed
to define a polyhedron in R3 later. For two adjacent vertices
Vi−1 and Vi, we define

Ri ≡ 1
2 (Vi + Vi−1), (23)

Ei ≡ 1
2 (Vi − Vi−1), (24)

where Ri is the center of the two vertices and Ei stands for
the segment from Vi−1 to Ri. The form factor of � at a wave

FIG. 2. Illustrations of the six different periodic cellular net-
works considered in this paper: From top to bottom, the square,
rhombic, honeycomb, square-octagon, triangular, and kagomé net-
works. We show each of them at three solid-phase volume fractions:
φ = 0.10, φ = 0.50, and φ = 0.95. Note that these networks can be
regarded as periodic point patterns in the limit of φ → 1.

vector k is

m̃(k; �) = 2

−ik‖2 k× ·
J∑

j=1

E j sinc(k · E j ) e−ik·R j , (25)

where n̂ is the unit normal vector of the face �, k‖ ≡ k − (k ·
n̂)n̂, k× = n̂ × k, and

sinc(x) ≡
{

1, x = 0,
sin x

x , otherwise
. (26)

Importantly, the ordering of vertices should fulfill the right-
hand rule with respect to the normal vector n̂ [see Fig. 1(a)],
implying that the vertex index increases counterclockwise
when n̂ is toward the reader. In two-dimensional applications,
one should take k = k‖.

We now consider a polyhedron P with K faces
(�1 , . . . ,�K ) in which a face � j is a polygon with Jj vertices.
For each face � j ( j = 1, . . . , K), its unit normal vector n̂ j

points toward the outside of P , and the order of vertices
fulfills the right-hand rule with n̂ j ; see Fig. 1(b). Then, the
form factor of P is

m̃(k;P ) = −1

ik2
k ·

K∑
j=1

n̂ j m̃(k; � j ) , (27)

where k ≡ |k|. The reader is referred to Ref. [40] for deriva-
tions of Eqs. (25) and (27) [41].
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FIG. 3. Unit cells of two-dimensional periodic networks:
(a) square, (b) rhombic, (c) honeycomb, (d) square-octagon, (e)
triangular, and (f) kagomé networks. While (a) and (d) have square
fundamental cells, the rest of networks have rhombic fundamental
cells. The length parameters L1 and L2 (shown in black and blue ar-
rows, respectively) determine the volume fraction of the solid phase
(red regions) φ = 1 − (L2/L1)2. These periodic networks can be
treated as packings of polygons defined by the white regions: Panels
(a)–(c) can be expressed by a single polygon in the fundamental cells,
whereas panels (d)–(f) needs multiple polygons.

IV. PERIODIC NETWORK MODELS

In this paper, we consider six different periodic networks
with volume fractions that span the entire interval [0,1]:
square, rhombic, honeycomb, square-octagon, triangular, and
kagomé networks. Figure 2 shows each of these networks at
small, intermediate, and large solid volume fractions (φ =
0.10, 0.5, and 0.95, respectively). Figure 3 provides the di-
mensional parameters for the unit cells, which determine the
corresponding solid-phase volume fractions. Except for the
kagomé and square-octagon networks, all “wall” thicknesses
are uniform across all volume fractions. In the cases of the
former two structures, the wall thicknesses are uniform for
each different polygon but are proportional to their area ra-
tios in order to span all volume fractions in the interval
[0,1]. Note that in the limit of φ → 1, these six network
models can be regarded as periodic point patterns. For exam-
ple, the square, honeycomb, and triangular networks become
the square-lattice, triangular-lattice, and honeycomb crystal,
respectively.

It is noteworthy that these cellular solids can optimize
certain effective physical properties. In the limit φ → 0, these
network structures maximize certain effective transport and
elastic properties. Specifically, all networks maximize the ef-
fective conductivity σe and effective bulk modulus Ke [42].
The effective shear modulus Ge is maximized for the trian-
gular network [42,43] as well as the kagomé network [44].
The triangular and kagomé networks are nearly optimal for σe,

FIG. 4. Illustrations of the four different models of the two-
dimensional periodic dispersions of nonoverlapping identical disks
considered in this paper with different solid-phase volume fractions:
φ = 0.50 and φ = 0.95. From top to bottom, we present dispersions
associated with the square and triangular lattices and honeycomb and
kagomé crystals.

Ke, and Ge over the possible range of volume fractions [45].
Due to the well-known mechanisms that lead to optimality
in the aforementioned networks, we can report here that the
rhombic and square-octagon networks maximize the effective
conductivity and effective bulk moduli in the limit of φ → 0.

Many of the periodic networks considered in this paper
can be derived from the tessellations associated with certain
underlying periodic point configurations. In order to make
contact with the corresponding rank ordering of class I pe-
riodic point configurations previously obtained [1,3] and the
rank ordering of our two-phase networks, it is instructive here
to briefly describe the relationships between the point con-
figurations and their tessellations. For example, the Voronoi
tessellation associated with points arranged on a square lattice
yields the square network. The Voronoi tessellation associ-
ated with points arranged on a triangular-lattice yields the
honeycomb network. The Voronoi tessellation associated with
points arranged on a honeycomb crystal yields the triangular
network.

V. PERIODIC AND DISORDERED PACKING MODELS

Here we consider four different two-dimensional disper-
sions of identical nonoverlapping circular disks on the sites
of the triangular and squares lattices as well as the sites of
honeycomb and kagomé crystals (see Fig. 4 for illustrations
of each of the periodic packings). We also investigate red
different disordered or irregular packings of circular disks:
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FIG. 5. Representative images of the three different models of
the two-dimensional disordered or irregular packings of identical
circular disks considered in this paper at different volume frac-
tions: (a) stealthy hyperuniform packing of χ = 0.49 and φ = 0.63,
(b) stealthy hyperuniform packing of χ = 0.40 and φ = 0.85, and
(c) perturbed-lattice packing of φ = 0.79.

stealthy hyperuniform packings (χ = 0.49 and χ = 0.4) and
perturbed-lattice packings (see Fig. 5 for illustrations of each
of these packings).

Stealthy hyperuniform packings of identical particles,
which are also class I, are defined by the spectral density
vanishing around the origin, i.e.,

χ̃V (k) = 0, for 0 � |k| � K. (28)

Specifically, we first generate stealthy hyperuniform point
configurations that include N particles in a periodic fun-
damental cell F via the collective-coordinate optimization
technique [46–48]. We then circumscribe the points by iden-
tical nonoverlapping disks [49]. For stealthy hyperuniform
packings (or point patterns), it is useful to define the χ pa-
rameter, which the ratio of constrained degrees of freedom to
total number of degrees of freedom [8,48], i.e.,

χ ≡ M
d (N − 1)

. (29)

For 0 < χ < 1/2, the stealthy hyperuniform point patterns are
highly degenerate and disordered, whereas for 1/2 < χ < 1
they crystallize [48]. Remarkably, disordered stealthy hype-
runiform nonoverlapping spherical obstacles (for sufficiently
high χ below 1/2) in a liquid also have nearly maximal effec-
tive diffusion coefficients as well as maximal effective thermal
or electrical conductivities for perfectly insulating inclusions
[49].

In this work, we numerically generate 30 different point
patterns of 104 particles with χ = 0.4 and χ = 0.49. Then

we determine their corresponding largest fractions of space
covered by the disks, which is equivalent to smallest possible
solid-phase volume fraction φmin, equal to about 0.153 (i.e.,
φ � φmin = 0.85) and 0.377 (i.e., φ � φmin = 0.63), respec-
tively.

We also generate perturbed-lattice packings by inde-
pendently displacing each point of a square lattice by a
random vector that is uniformly distributed in a closed square
[−a/2, a/2]2 [50]. We then circumscribe the resulting points
by identical nonoverlapping disks. The resulting point pattern
(or packing) is class I hyperuniform; see Refs. [19–21] for de-
tails. In this work, we numerically generate 50 configurations
of 104 particles and a = 0.48. We find that their largest possi-
ble fraction of space covered by the disks, which is equivalent
to the smallest possible solid-phase volume fraction φmin, is
around 0.213 (i.e., φ � φmin = 0.79).

VI. CHARACTERISTIC LENGTH SCALES

When ranking class I hyperuniform systems according
to the hyperuniformity order metric BV (BN for the point-
configuration counterparts [1,3]), it is critical to choose an
appropriate characteristic length scale D because these order
metrics depend on D, as we noted in Sec. II A. In the case
of hyperuniform point patterns in Rd , it is natural to choose
D = ρ−1/d , where ρ is the number density of points. However,
the choice of a length scale in the case of two-phase media is
highly nontrivial because the geometries and topologies of the
phases are generally much richer and more complex than point
configurations. Indeed, there are an infinite number of ways of
decorating a point configuration to produce two-phase media,
all of which cannot be universally characterized.

In this paper, we consider and evaluate several possible
choices for the length scale D according to the following three
criteria: (i) D must be defined for general two-phase media,
(ii) D must be independent of the choice of phase, and (iii) the
associated order metric BV must be a finite number for any
volume fraction. Seemingly obvious choices for D, including
the size of a fundamental cell for periodic systems or the mean
nearest-distance for disordered or irregular packings, fail to
meet the criteria (i) and (ii). There are several candidates that
satisfy the criterion (i), such as the mean chord length of one
phase (i.e., the expected length of line segments in the phase
between the intersections of an infinitely long line with the
two-phase interface [6,51,52]). However, criteria (ii) and (iii)
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FIG. 6. Log-log plots of the local volume-fraction variances σ 2
V (R) of two-dimensional ordered and disordered cellular solids at a selected

solid-phase volume fraction φ = 0.85: (a) honeycomb network, (b) triangular-lattice disk packing, and (c) stealthy hyperuniform packings of
χ = 0.4. The first two models are periodic structures, whereas the last is a disordered one. Here we take the inverse of the specific surface 1/s
to be unity, i.e., D = 1/s = 1.
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FIG. 7. Surface-area coefficient BV (R) as a function of window radius R of two-dimensional ordered and disordered cellular solids at a
selected solid-phase volume fraction φ = 0.85, as per Fig. 6. Here the red dashed line in each panel represents BV for each model.

immediately eliminate the mean chord length of an individual
phase. The resulting BV diverges at either φ = 0 or φ = 1.
Averages based on the mean chord length for each phase,
such as the arithmetic and geometric means, satisfy all criteria.
One such example is the inverse of the specific surface (i.e.,
the mean interface area per volume) 1/s, which turns out to
be directly proportional to the arithmetic mean of the mean
chord length 


(i)
C of both phases, i.e., 1/s = [
(1)

C + 

(2)
C ]/π [6].

Explicit formulas for the specific surface s of all models con-
sidered in the paper are provided in Appendix A. Henceforth,
we employ D = s−1.

VII. RESULTS

We consider two-dimensional ordered and disordered two-
phase media, shown in Figs. 3, 4, and 5 with taking the inverse
of the specific surface as the characteristic length scale, i.e.,
D = 1/s = 1. Figure 6 shows log-log plots of local volume-
fraction variances σ 2

V (R) as a function of window radius R
at a solid-phase volume fraction φ = 0.85 for honeycomb
network, triangular-lattice packing, and disordered stealthy
hyperuniform packings (with χ = 0.40). The variances for
the periodic models and the disordered example are obtained
from Eq. (19) and the MC method, respectively. For all mod-
els considered here, σ 2

V (R) globally decays as fast as R−3

in the large-R regime, which are of class I hyperuniformity
[cf. Eq. (5)], and fluctuates on “microscopic” length scales,
which in the case of periodic structures, are associated with
the spacing of the underlying Bravais lattice.

We plot the surface-area coefficients BV (R) for the models
considered in Fig. 6 to more closely investigate such local
fluctuations of σ 2

V (R); see Fig. 7. As pointed earlier, BV (R)
(black solid lines in Fig. 7) oscillates around an average value
BV (red dashed lines in Fig. 7). For disordered systems [shown
in Fig. 7(c)], such oscillations typically decay as R increases,
whereas for periodic networks, the amplitude of the oscilla-
tions does not decrease, even in the limit of R → ∞.

Figure 8 shows how the hyperuniformity order metric BV

for two-dimensional two-phase media varies with the volume
fraction φ. For periodic networks or disk packings, BV is
evaluated from Eq. (21), whereas the disordered or irregular
counterparts are evaluated by applying the running average
associated with (12) to the MC results. For periodic networks,
where φ can span from 0 to 1, as shown in Fig. 8(a), BV

exhibits the following three common characteristics: (i) It
vanishes trivially at φ = 0 and φ = 1, (ii) it is proportional
to φ2 for small φ, and (iii) it has a maximum at around

φ = 0.4. By contrast, for periodic or disordered disk packings,
BV trivially vanishes at φ = 1, but the other characteristics are
not observed; see Fig. 8(b). We first investigate the rankings
of BV for periodic networks shown in Fig. 8(a) and those
for disk packings in Fig. 8(b) separately and then discuss the
rankings for all models. Among the considered periodic net-
works, honeycomb, and kagomé ones achieve the minimum
and maximum values of BV , respectively, at a given value of
volume fraction φ. For the six network models, the values BV

increases from honeycomb, square, rhombic, square-octagon,
triangular, to kagomé ones. Note that the ranking for the hon-
eycomb, square, and triangular networks are consistent with
the ranking of the corresponding metrics for the point counter-
parts of these three network models (triangular lattice, square
lattice, and honeycomb crystals, respectively, as discussed in
Sec. IV) given in Ref. [1,3]. Moreover, we note that periodic
networks with a single void region in the fundamental cell
(honeycomb, square, and rhombic) tend to be more ordered
(i.e., smaller BV ) than those with multiple void regions in the
fundamental cell (square-octagon, triangular, and kagomé).

Figure 8(b) shows that among the periodic disk packings,
the triangular and kagomé packings achieve the minimum and
maximum values of BV , respectively. Considering all models
of disk packings, the values of BV at a given volume fraction
φ increases from triangular, square, disordered stealthy (χ =
0.49), disordered stealthy (χ = 0.4), honeycomb, kagomé, to
perturbed lattice. Similar to the case of periodic networks,
the Bravais-lattice packings (triangular and square) are more
ordered than non-Bravais-lattice packings (honeycomb and
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FIG. 8. Asymptotic values of the surface-area coefficient BV

as a function of the solid-phase volume fraction φ for (a) two-
dimensional periodic networks and (b) ordered and disordered disk
packings. We take the length scale as D = 1/s = 1, where s is the
specific surface. In (b), SHU and PLP stand for the stealthy hyperuni-
form packing and perturbed-lattice packing, respectively. The inset in
(b) is a magnification of the larger panel.
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TABLE I. Hyperuniformity order metric BV of the six models of two-dimensional periodic cellular networks at various values of volume
fraction φ; see Fig. 3. The quantities are computed by Eq. (21) and taking the characteristic length scale to be the inverse of the specific surface,
i.e., D = 1/s = 1. Note that for a given value of φ, BV increases from top to bottom.

φ 0.1 0.25 0.4 0.55 0.7 0.85

Honeycomb 2.2570 × 10−3 9.2268 × 10−3 1.3279 × 10−2 1.1351 × 10−2 5.6546 × 10−3 1.0020 × 10−3

Square 3.1288 × 10−3 1.2433 × 10−2 1.7512 × 10−2 1.4717 × 10−2 7.2338 × 10−3 1.2693 × 10−3

Rhombic 3.1320 × 10−3 1.2519 × 10−2 1.7846 × 10−2 1.5301 × 10−2 7.7541 × 10−3 1.4222 × 10−3

Square-octagon 3.7286 × 10−3 1.4953 × 10−2 2.1225 × 10−2 1.7943 × 10−2 8.8514 × 10−3 1.5538 × 10−3

Triangular 6.7514 × 10−3 2.5523 × 10−2 3.4413 × 10−2 2.7739 × 10−2 1.3071 × 10−2 2.1926 × 10−3

Kagomé 6.9411 × 10−3 2.7262 × 10−2 3.8114 × 10−2 3.1837 × 10−2 1.5553 × 10−2 2.7074 × 10−3

kagomé). Importantly, such a ranking of disk packings is
identical to the rankings of the point counterparts that were re-
ported in Ref. [2,3], i.e., triangular, square, disordered stealthy
(χ = 0.496), disordered stealthy (χ = 0.402), honeycomb,
and kagomé.

In the discussion above, we consider the rankings for pe-
riodic network models [Fig. 8(a)] and those for disk packings
[Fig. 8(b)] separately. There, the rankings for the models in
each class does not change as the solid-phase volume fraction
φ is varied. However, when rankings all models in both peri-
odic networks and periodic and disordered disk packings, the
resulting rankings can change with φ, and hence the volume
fraction φ should be specified. For this purpose, we tabulate
BV for the periodic networks, periodic disk packings, and
disordered disk packings at selected values of the solid-phase
volume fraction φ in Tables I, II, and III, respectively. From
Tables I and II, we immediately see that while the triangular
disk packing is generally more ordered than the honeycomb
network, their rankings change for φ � 0.1. As shown in
Tables I–III, among all considered models at φ = 0.85, the
triangular-lattice packing and perturbed-lattice packing have
the smallest and highest values of BV , respectively. We also
note that at φ = 0.85, the triangular- and square-lattice pack-
ings have lower order metrics than their network counterparts
(i.e., honeycomb and square networks, respectively). This im-
plies that the length scale D = 1/s = 1 penalizes the order
metric BV of a packing of nonspherical particles compared to
the corresponding sphere packing.

VIII. CONCLUSIONS AND DISCUSSION

In this work, we took initial steps to characterize a re-
stricted subset of class I hyperuniform two-phase media in
two dimensions by ascertaining their local volume-fraction
variances σ 2

V (R) and the associated hyperuniformity order

metrics BV . These models include a variety of different pe-
riodic cellular networks, periodic packings, and disordered
or irregular packings, some of which maximize their effec-
tive transport and elastic properties [42–45,49]. Using the
estimated BV and a judicious choice for a length scale to
make it dimensionless (as discussed below), we ranked these
class I models of two-phase media according to the degree to
which they suppress large-scale volume-fraction fluctuations.
Among the periodic networks, the honeycomb and kagomé
networks always achieve the lowest and highest BV , respec-
tively, and the rankings do not change as the solid-phase
volume fraction φ varies. Similarly, the rankings for disk
packings also do not change with φ. The triangular-lattice
packings (whose Voronoi tessellations are honeycomb net-
works) and the perturbed-lattice packings have the minimum
and maximum values of BV , respectively.

Not surprisingly, the overall rankings for both network
and packing models with their distinctly different geome-
tries and topologies are difficult to unscramble because they
change with φ. Nonetheless, we summarize these rankings
by making two general observations. First, the rankings for
packings of identical disks are consistent with those of the
point-configuration order metric BN corresponding to their
underlying point patterns [1–3] at any considered volume
fraction φ. Second, for both periodic networks and periodic
packings with the same underlying Bravais lattice, the struc-
tures with smaller specific surfaces have lower values of BV .
We note that the second observation is generally true, with
a few notable exceptions in which the volume fraction of the
solid phase becomes so low that the disks are nearly in contact
with one another. Specifically, among all models considered in
this work, triangular-lattice packings have the minimal values
of BV for all solid-phase volume fractions greater than 0.1.
Otherwise, the honeycomb networks possess the smallest val-
ues of BV .

TABLE II. Hyperuniformity order metric BV of the four models of two-dimensional periodic disk packings at various values of volume
fraction φ; see Fig. 4. The quantities are computed by Eq. (21) and taking the characteristic length scale to be the inverse of the specific surface,
i.e., D = 1/s = 1. Note that for a given value of φ, BV increases from top to bottom.

φ 0.1 0.25 0.4 0.55 0.7 0.85

Triangular 2.7700 × 10−3 8.5512×10−3 1.1794 × 10−2 9.9491 × 10−3 4.9261 × 10−3 8.6942 × 10−4

Square − 1.5130 × 10−2 1.5402 × 10−2 1.1455 × 10−2 5.3311 × 10−3 9.0849 × 10−4

Honeycomb − − − 2.1331 × 10−2 7.9380 × 10−3 1.1566 × 10−3

Kagomé − − 5.2200 × 10−2 2.5962 × 10−2 9.0773 × 10−3 1.2592 × 10−3
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TABLE III. Hyperuniformity order metric BV of the three models of two-dimensional disordered disk packings at a selected volume
fraction φ = 0.85 and their respective lowest volume fractions φmin; see Fig. 5. The values of φmin for various models are provided in Fig. 5.
The quantities are computed by the MC procedure and Eq. (12) and taking the characteristic length scale to be the inverse of the specific
surface, i.e., D = 1/s = 1. The uncertainties are estimated from the statistical errors in the estimation of σ 2

V (R).

Model BV at φmin BV at φ = 0.85

Stealthy hyperuniform packings (χ = 0.49) 8.9655(6)×10−3 9.4349(6)×10−4

Stealthy hyperuniform packings (χ = 0.4) 1.0313(1)×10−3 1.0313(1)×10−3

Perturbed-lattice packing 3.6034(3)×10−3 1.7298(1)×10−3

When establishing these rankings according to BV , it is
crucial to determine a characteristic length scale D to make BV

dimensionless, which is highly nontrivial due to the need to
account for a wide spectrum of two-phase structures. Among
various possibilities, we chose the inverse of the specific sur-
face 1/s as the length scale D, which meet three important
criteria: generality across microstructure classes, phase inde-
pendence, and boundedness of the associated BV . The value
of s is also easy to compute. Furthermore, it is one of the
Minkowski functionals (i.e., volume, surface area, integrated
mean curvature, and Euler number), which are fundamental
shape descriptors that have been widely used in various ap-
plications [53,54]. The integrated mean curvature might also
serve as a choice of the length scale D. Although we have
made the specific choice D = s−1 in this work, we note that
one can easily convert our results for BV to the corresponding
quantity for any another length scale D = 
 by use of the
following relation that depends on the space dimension d:

BV |D=
 = BV /(s
)d+1. (30)

Our study lays the theoretical foundation to establish hype-
runiformity order metrics of more general two-phase systems.
Toward this end, one needs to develop methods to estimate
σ 2

V (R) for a wider class of hyperuniform two-phase media
than what can be handled by the methods used in this work,
such as labyrinth-like patterns associated with spinodal de-
composition [13]. Such a development will also be beneficial
in detecting (effective) hyperuniformity of relatively small
systems, in which the asymptotic analysis of σ 2

V (R) [cf. (2)]
is more reliable than the spectral-density condition (1) [55].
Further studies in three and higher dimensions will be helpful
in determining whether BV scaled by D = 1/s is a robust order
metric. It would also be useful to know whether the two-
phase counterpart of the decorrelation principle [56,57] for
disordered two-phase media could be observed as the space
dimension increases.

Another promising avenue for future study is the construc-
tion of two-phase structures with a prescribed value of BV .
This problem can be regarded as a type of Fourier-space
based inverse design procedure [25], in which the Fourier
representation of BV , as defined by Eq. (21), is taken as the
objective function. Such a procedure can be employed to dis-
cover new types of periodic structures with a specified value
of BV . The algorithm developed to solve this problem would
aid in determining whether the triangular-lattice disk packing,
which we demonstrated minimizes BV among the considered

models, is a global minimizer for BV among a larger class
of models. An interesting open problem is the determiantion
of the physical properties that are optimized by the global
minimizer of BV for a fixed volume fraction under appro-
priate constraints. Finally, it will be of interest to ascertain
whether hyperuniformity of fluctuations associated with the
two-phase interface [4] leads to the same rank ordering as for
volume-fraction fluctuations for the models considered in this
investigation.
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APPENDIX: SPECIFIC SURFACE FOR VARIOUS
MODELS OF TWO-PHASE MEDIA

Table IV provides the formulas for the specific surface s
for all two-dimensional models of class I hyperuniform two-
phase media considered in this work. We note that all disk
packings, ordered or not, have the same specific surface if they
are at the same number density ρ.

TABLE IV. Formulas for the specific surface s for all models
considered in this work. For periodic networks and disk packings,
the specific surface can be expressed as s = C

√
1 − φ/L1, where L1

is a length parameter of the unit cells; see Fig. 5. For any disordered
or irregular disk packing of the number density ρ, the specific surface
is written as s = C

√
1 − φρ1/2.

Models C

Honeycomb 4
Square 4

Rhombic 8/
√

3Periodic networks
Square-octagon 12/(1 + √

2)
Triangular 4

√
3

Kagomé 4
√

3

Triangular 2
√

2π/31/4

Square 2
√

πPeriodic disk packings
Honeycomb 4

√
π/31/4

Kagomé 2
√

2π/31/4

Disordered disk packing 2
√

π
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