
            

PAPER • OPEN ACCESS

Effective elastic wave characteristics of composite media
To cite this article: J Kim and S Torquato 2020 New J. Phys. 22 123050

 

View the article online for updates and enhancements.

This content was downloaded from IP address 24.91.8.65 on 30/12/2020 at 14:53

https://doi.org/10.1088/1367-2630/abcc99


New J. Phys. 22 (2020) 123050 https://doi.org/10.1088/1367-2630/abcc99

OPEN ACCESS

RECEIVED

31 July 2020

REVISED

6 November 2020

ACCEPTED FOR PUBLICATION

20 November 2020

PUBLISHED

30 December 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Effective elastic wave characteristics of composite media

J Kim1 and S Torquato1,2,3,4

1 Department of Physics, Princeton University, Princeton, NJ 08544, United States of America
2 Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
3 Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544, United States of America
4 Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: torquato@princeton.edu

Keywords: effective-medium theory, strong-contrast expansion, elastic waves, hyperuniform materials, multiple scattering, two-phase
heterogeneous media

Supplementary material for this article is available online

Abstract
We derive exact expressions for effective elastodynamic properties of two-phase composites in the
long-wavelength (quasistatic) regime via homogenized constitutive relations that are local in space.
This is accomplished by extending the ‘strong-contrast’ expansion formalism that was previously
applied to the static problem. These strong-contrast expansions explicitly incorporate complete
microstructural information of the composite via an infinite set of n-point correlation functions.
Utilizing the rapid-convergence properties of these series expansions (even for extreme contrast
ratios), we extract accurate approximations that depend on the microstructure via the spectral
density, which is easy to compute or measure for any composite. We also investigate the predictive
power of modifications of such approximation formulas postulated elsewhere (Kim and Torquato
2020 Proc. Natl Acad. Sci. 117 8764) to extend their applicability beyond the quasistatic regime. The
accuracy of these nonlocal microstructure-dependent approximations is validated by comparison
to full-waveform simulation results for certain models of dispersions. We apply our formulas to a
variety of models of nonhyperuniform and hyperuniform disordered composites. We demonstrate
that hyperuniform systems are less lossy than their nonhyperuniform counterparts in the
quasistatic regime, and stealthy hyperuniform media can be perfectly transparent for a wide range
of wavenumbers. Finally, we discuss how to utilize our approximations for engineering composites
with prescribed elastic wave characteristics.

1. Introduction

The theoretical determination of the effective elastic wave characteristics of multiphase composite media is
of great importance in geophysics [1–3], exploration seismology [4, 5], diagnostic sonography [6], crack
diagnosis [7, 8], architectural acoustics [9] and acoustic metamaterials [10], among many examples. Such
effective elastic properties generally depend on the phase properties, phase volume fractions φi, frequency ω

or wavenumber kI of the incident elastic waves, and an infinite set of correlation functions that characterizes
the composite microstructure [11–13]. There have been numerous theoretical/computational attempts to
estimate the effective elastic wave characteristics [11–18]. However, the preponderance of previous
closed-form approximation formulas for the effective elastodynamic properties apply only in the quasistatic
regime [13, 16], i.e. applicable when kI� � 1, where � is a characteristic heterogeneity length scale5, and
under restrictive conditions. One such closed-form approximation is the Gaunaurd–Überall approximation
(GUA) [16, 19], which we employ to compare to simulation data and our nonlocal formulas described
below.

5 Some multiple-scattering approximations for effective elastic waves are accurate beyond the quasistatic regime; see reference [18] and
references therein. However, these formulas require complicated scattering coefficients of individual scatterers.
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Figure 1. (a) Schematic of a large ellipsoidal, macroscopically anisotropic two-phase composite medium embedded in an
infinite reference phase of mass density ρI and stiffness tensor CI (gray regions) under an applied elastic waves
ε0 (x) = ε̃0 exp (i(kI · x − ωt)) of frequency ω. The wavelength λ associated with the applied wave can span from the quasistatic
regime (2π�/λ � 1) down to the intermediate-wavelength regime (2π�/λ � 1), where � is a characteristic heterogeneity length
scale. (b) After homogenization, the same ellipsoid can be regarded to be a specimen of a homogeneous medium with an
effective stiffness tensor Ce (kI,ω), which depends on ω and kI. As noted in the main text, we omit the ω dependence of Ce (kI,ω)
because (without loss of generally) we assume a linear dispersion relation between |kI| and ω. In the infinite-volume limit, we
show that the effective wave characteristics are independent of the shape of the ellipsoidally-shaped composite.

Our focus in this paper is the theoretical determination of the effective dynamic stiffness tensor
Ce (kI,ω) of a two-phase elastic composite in d-dimensional Euclidean space Rd, which depends on the
frequency ω or wavevector kI of the incident elastic waves beyond the quasistatic regime; see figure 1. From
this effective property, one can determine the corresponding effective wave speeds c L,T

e and attenuation
coefficients γL,T

e . To achieve this goal, we first generalize the strong-contrast expansion formalism that has
been employed to treat the static elastic problem [20–22] to the elastodynamic problem in the quasistatic
regime by establishing homogenized constitutive relations that are local in space. Because of the interplay
between longitudinal and transverse waves and the complexity of the fourth-rank tensors that are involved,
this task is considerably more challenging than the derivation of its electromagnetic counterparts [23, 24].
The terms of the resulting quasistatic strong-contrast expansions are explicitly given in terms of integrals
over products of Green’s functions and the n-point correlation functions S(i)

n (x1, · · · , xn) of the random
two-phase medium to infinite order. Here, the quantity S(i)

n (x1, · · · , xn) gives the probability of finding n
points at positions x1, · · · , xn simultaneously in phase i. This implies that multiple scattering to all orders is
exactly treated in the long-wavelength or quasistatic regime. It is noteworthy that the strong-contrast
expansions are given in terms of expansion parameters that are rational functions of the phase moduli. This
endows strong-contrast expansions with rapid convergence properties, even for large phase contrast ratios.
This behavior is to be distinguished from standard perturbation treatments that result in so-called
‘weak-contrast’ expansions [22] that slowly converge and only apply for small phase contrast ratios.

Due to the fast-convergence properties of strong-contrast expansions, their lower-order truncations
yield accurate closed-form approximate formulas for the effective dynamic moduli that apply to a wide class
of microstructures. Postulated nonlocal variants of these formulas are resummed representations of the
strong-contrast expansions that still accurately capture multiple scattering to all orders via the
microstructural information embodied in the spectral density χ̃V (Q). The quantity χ̃V (Q) is the Fourier
transform of the autocovariance function χV (r) ≡ S(i)

2 (r) − φi
2, where r ≡ x2 − x1, which can be easy to

ascertain for general microstructures theoretically, computationally, or via scattering experiments [25].
We also verify the accuracy of the postulated approximations via full-waveform simulations for certain

benchmark models. This validation allows us to use them to predict the effective elastic wave characteristics
accurately well beyond the quasistatic regime for a wide class of composite microstructures without
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computationally expensive full-blown simulations. As discussed in section 2, such a broad microstructure
class includes particulate composites consisting of identical or polydisperse particles of arbitrary shapes
(ellipsoids, cylinders, polyhedra) that may or not overlap, cellular networks as well as systems without
well-defined inclusions. Such broad applicability is a notable advantage of our formulas over other
multiple-scattering approximations, such as Keller’s approximation [14, 26].6 Thus, our postulated
formulas can be employed to accelerate the discovery of novel elastodynamic composites by appropriate
tailoring of the spectral densities [27, 28] and then generating the microstructures satisfying them [28], as
elaborated in section 7.

While our strong-contrast formulas for the effective dynamic elastic moduli can be applied to periodic
two-phase media, the primary applications are spatially correlated disordered media because they can
provide advantages over periodic ones with high crystallographic symmetries [29, 30], including perfect
isotropy and robustness against defects [31, 32]. We are interested in both ‘garden-variety’ models [22] as
well as exotic hyperuniform forms [33–35] of disordered two-phase media. Hyperuniform two-phase
systems are characterized by an anomalous suppression of volume-fraction fluctuations in the
infinite-wavelength limit [33–35], i.e. the spectral density χ̃V (Q) obeys the condition

lim
|Q|→0

χ̃V (Q) = 0. (1)

Such hyperuniform two-phase media encompass all periodic systems, many quasi-periodic media, and
exotic disordered ones; see reference [35] and references therein. Disordered hyperuniform systems are
exotic states of matters that lie between crystals and liquids; they behave like crystals in the way they
suppress large-scale density fluctuations and yet are like liquids because they are statistically isotropic
without any Bragg peaks [33–35]. Hyperuniform systems have attracted considerable attention over the last
decade because of their close connections to a broad spectrum of topics that arise in physical [29, 35–48],
mathematical [49–51], and materials sciences [28, 52–55] as well as the emerging technological importance
of the disordered varieties [32, 35, 45, 52, 56–60].

We apply our nonlocal strong-contrast formulas to predict the real and imaginary parts of the effective
elastic moduli for model microstructures that possess some typical disorder (nonhyperuniform) as well as
those with exotic hyperuniform disorder (section 5). We are particularly interested in exploring the elastic
properties of a special class of hyperuniform composites called disordered stealthy hyperuniform media,
which are defined to be those that possess zero-scattering intensity for a set of wavevectors around the
origin [28, 36, 61–63], i.e.

χ̃V (Q) = 0, for 0 � Q � QU, (2)

where Q ≡ |Q|. Disordered stealthy hyperuniform materials have been shown to exhibit novel optical,
acoustic, mechanical, and transport properties [23, 53, 54, 57, 64–67]. Among other results, we show here
that disordered hyperuniform media are generally less lossy than their nonhyperuniform counterparts. We
also demonstrate that disordered stealthy hyperuniform particulate composites exhibit novel wave
characteristics, including the capability to act as low-pass filters that transmit elastic waves isotropically
without loss up to a selected wavenumber. Our results demonstrate that one can design the effective wave
characteristics of a disordered composite, hyperuniform or not, by engineering spatial correlations of
microstructure at prescribed length scales.

In section 2, we present the strong-contrast formalism to derive corresponding expansions of the
effective elastic wave characteristics of macroscopically anisotropic two-phase media in the quasistatic
regime. While we assume that both phases are elastically isotropic for simplicity, the effective elastic
properties are described by a full fourth-rank tensor (what we mean by macroscopically anisotropic media)
due to possibly statistically anisotropic microstructures. In section 3, we extract strong-contrast
approximations from the exact expansions. In section 4, we extend the validity of the strong-contrast
approximations for the effective dynamic moduli so that they apply well beyond the quasistatic regime. The
accuracy of these nonlocal approximations is verified by comparison to full-waveform simulations for
certain benchmark models. In section 5, we describe four models of disordered composites that we treat in
the paper, two of which are nonhyperuniform and two of which are hyperuniform. In section 6, we
investigate the microstructure-dependence of the effective elastic wave characteristics for these models.
Finally, we provide concluding remarks in section 7.

6 Keller’s approximation is derived for the simplified case in which only longitudinal waves propagate in a very special system: colloidal
suspensions of spherical particles in which the fluid has zero shear modulus. Such systems can be treated with the scalar Helmholtz
equation, which is to be contrasted with our treatment of the full elastodynamic equations for macroscopically anisotropic media.

3



New J. Phys. 22 (2020) 123050 J Kim and S Torquato

2. Exact strong-contrast expansions

Here we extend the general strong-contrast formalism that was devised for the purely static elastic problem
[20–22] to the elastodynamic problem in the long-wavelength (quasistatic) regime. We first present a
compact derivation of the expansions for the effective stiffness tensor Ce (kI,ω) of a macroscopically
anisotropic medium (section 2.1) and then specialize them to a macroscopically isotropic medium
(section 2.2). Detailed derivations are given in the supplementary material (SM) (https://stacks.iop.org/
NJP/22/123050/mmedia) [69].

We will exploit the same useful mathematical properties of the strong-contrast formalism that has been
used to treat elastostatics [21, 22], as we briefly outline here. We begin with the integral solution of the
elastodynamic equations in terms of the fourth-rank tensor Green’s function. The singular nature of the
Green’s function requires us to exclude a region around the singularity, but we recognize that the choice of
the shape of this ‘exclusion’ region enables us to generate an infinite family of exact series expansions. By
choosing a spherical exclusion region, we are able to derive strong-contrast expansions that rapidly
converge, even for large phase contrast ratios. The terms of the resulting strong-contrast expansions are
explicitly given in terms of absolutely convergent integrals over products of Green’s functions and certain
n-point correlation functions through all orders. The rapid convergence of strong-contrast expansions
enables us to extract accurate approximation formulas from the exact expansions.

2.1. Macroscopically anisotropic media
Here, we consider macroscopically anisotropic two-phase media with isotropic phases but whose effective
elastic properties are described by a full fourth-rank tensor Ce. Macroscopic anisotropy arises with isotropic
phases because the microstructure can generally be statistically anisotropic, e.g. layered media and oriented
ellipsoids in a matrix. (See reference [68] for a description of anisotropic phases for elastostatics.) We follow
closely the strong-contrast formalism of Torquato [21, 22] but apply it to derive the analogous series
expansions for the effective dynamic moduli. We consider a macroscopically large ellipsoidal specimen of
two-phase statistically homogeneous but anisotropic composite in R

d embedded inside an infinitely large
reference phase I with mass density ρI and stiffness tensor CI; see figure 1. The microstructure is perfectly
general, and its inhomogeneity length scale � is much smaller than the specimen size, i.e. � � L. The shape
of this specimen is purposely chosen as nonspherical since any rigorously correct expression for the effective
property must ultimately be independent of the shape of the composite specimen in the infinite-volume
limit. Mathematically, we prove this below by showing that the strong-contrast formalism leads to effective
properties that involve absolutely convergent integrals.

For a two-phase medium, we define the indicator function for phase i as [22, 70]

I(i) (x) ≡

⎧⎨
⎩1, x lies in phase i

0, otherwise
, for i = 1, 2. (3)

For statistically homogeneous media, its ensemble average is simply the phase volume fraction, i.e.
φi ≡

〈
I(i) (x)

〉
so that φ1 + φ2 = 1. The local stiffness tensor C (x) of such a medium can be written as

C (x) ≡ C1I(1) (x) + C2I(2) (x) , (4)

where Ci denotes the stiffness tensor of phase i(= 1, 2). For simplicity, we take the reference phase to be
phase q (equal to 1 or 2).

In the ensuing discussion, we make the following three assumptions on the phase properties.

(a) Phases 1 and 2 are elastically isotropic in d-dimensional Euclidean space Rd, i.e.

Ci = dKiΛh + 2GiΛs, (i = 1, 2) (5)

where Ki and Gi are bulk and shear moduli of phase i(= 1, 2), respectively. Here, the hydrostatic
projection tensor Λh and shear projection tensor Λs are constant fourth-rank tensors given by

(Λh)ijkl ≡
1

d
δijδkl, (6)

(Λs)ijkl ≡
1

2

(
δikδjl + δilδjk

)
− 1

d
δijδkl, (7)

where δij is the Kronecker delta symbol. The tensor Λh projects onto fields that are isotropic
everywhere, whereas the tensor Λs projects onto fields that are trace-free (see the SM [69] for useful
identities).
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(b) Each phase is dissipationless, namely, the elastic moduli Ki and Gi for i = 1, 2 are real-valued and
frequency-independent.

(c) The mass densities of both phases are identical, i.e.

ρ1 = ρ2 = ρe. (8)

Assumption (a) enables us to decompose the elastic waves in phase i(= 1, 2) into longitudinal and
transverse waves with their respective wave speeds cLi and cTi ,

7 which are defined by

cLi
2 ≡ [Ki + 2(1 − 1/d)Gi]/ρi, cTi

2 ≡ Gi/ρi. (9)

Under this assumption, the Poisson ratio ν i of phase i is expressed as [22]

νi =
dKi − 2Gi

d(d − 1)Ki + 2Gi
, (10)

and bounded in the range of −1 � ν i � 1/(d − 1) [22, 71]. Assumption (b) means that these speeds are
independent of frequency ω, implying the following linear dispersion relations:

ω = cLi/kLi = cTi/kTi (i = 1, 2), (11)

where kLi and kTi are longitudinal and transverse wavenumbers, respectively. Assumption (c) is achievable
for many pairs of solid materials; see discussion in reference [67].

We suppose that the applied or incident elastic strain field ε0 (x) is a plane wave of an angular frequency
ω, well-defined propagation direction k̂ in the reference phase, and the associated wavelength λ. Our
interest is in deriving an exact expression for the effective stiffness tensor Ce (ω) or, equivalently, Ce

(
kLq

)
in

the quasistatic regime (� � λ), where kLq is the longitudinal wavenumber (11) in the reference phase. While
each phase is dissipationless, as stated in (b), the composite is generally lossy (i.e. Ce is complex-valued) due
to scattering from the inhomogeneities. Nonetheless, our results can be straightforwardly extended to
viscoelastic media (with complex-valued moduli), but this will not be done in the present work.

Under the assumptions (a)–(c), the local displacement field u (x) solves the time-harmonic wave
equation:

ω2ui +
(
cLq

2 − cTq
2
) ∂2uk

∂xi∂xk
+ cTq

2 ∂2ui

∂xl∂xl
= −∂Pij (x)

∂xj
, (12)

where the Einstein summation is implied, cLq and cTq are given in (9), and Pij (x) is the induced stress
polarization field given by

P (x) ≡ ρq
−1
[
C (x) − Cq

]
: ε (x) , (13)

and ε (x) is the local strain tensor [71]. The symmetric second-rank tensor P (x) is the induced field relative
to the reference phase q, and hence is nonzero only in the ‘polarized’ phase p (p �= q).

Following Torquato [21, 22], we use a Green’s function formalism to solve the wave equation (12) for u
for an arbitrary macroscopically anisotropic two-phase medium:

u (x) = u0 (x) +

∫
g(q)
(

x − x′) · [∇ · P
(

x′)] dx′, (14)

where u0 (x) is related to the applied strain ε0, and g(q) (r) is the second-rank Green’s function associated
with (12). Taking the symmetric part of the gradient of u (x) gives an integral equation for the local strain
tensor ε (x):

ε (x) = ε0 (x) +

∫
G(q)

(
x − x′) : P

(
x′) dx′, (15)

where the fourth-rank Green function G(q) (r) associated with the reference phase q is given by [22]

G(q) (r) = −D(q)δ (r) + H(q) (r) , (16)

r ≡ x − x′, D(q) is a constant fourth-rank tensor that arises when one excludes an infinitesimal volume
around the singularity of the Green function at x′ = x, and H(q) (r) is the contribution outside of this
‘exclusion’ region.

7 In this paper, ‘wave speed’ always refers to the speed associated with the phase of the wave. This term is used instead of ‘phase speed’
because ‘phase’ in this paper refers to a constituent material of a composite.
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The fourth-rank tensor H(q) (r) is symmetric under the following index changes, i.e.

H(q)
ijkl = H(q)

jikl = H(q)
ijlk = H(q)

klij , (17)

and its explicit expression is given by

H(q) (r) =
−iπ

2(2π)d/2

1

ω2rd+2

{[
rd/2+1

L H(1)
d/2+1 (rL) − rd/2+1

T H(1)
d/2+1 (rT )

]
(dΛh + 2I) + rd/2+2

T H(1)
d/2 (rT) I

−
[

rd/2+2
L H(1)

d/2+2 (rL) − rd/2+2
T H(1)

d/2+2 (rT )
]

[2T1 (r) + 4T2 (r)] − rd/2+3
T H(1)

d/2+1 (rT) T2 (r)

+
[

rd/2+3
L H(1)

d/2+3 (rL) − rd/2+3
T H(1)

d/2+3 (rT )
]

T3 (r)
}

, (18)

where rL ≡ kLq r, rT ≡ kTq r, I is the fourth-rank identity tensor, and H(1)
ν (x) is the Hankel function of the

first kind of order ν. The three fourth-rank tensors Ti (r) for i = 1, 2, 3 are defined, in component form, as

(T1)ijkl (r) ≡ 1

2

(
δijr̂kr̂l + r̂ir̂jδkl

)
, (19)

(T2)ijkl (r) ≡ 1

4

(
r̂iδjkr̂l + r̂jδikr̂l + r̂iδjlr̂k + r̂jδilr̂k

)
, (20)

(T3)ijkl (r) ≡ r̂ir̂jr̂kr̂l, (21)

r̂ ≡ r/ |r|, and r̂i is the ith component of r̂. Formulas for the traces of H(q) (r) are provided in the SM [69].
Note that (18) reduces to its static counterpart given in references [20–22] up to a multiplicative factor ρq in

the static limit. The constant tensor D(q) depends on the ‘exclusion-region’ shape. Due to the
fast-convergence properties of the resulting expansion discussed below and in references [20, 22, 24], we
choose a spherical-exclusion region, for which

D(q) =
ρeΛh

dKq + 2(d − 1)Gq
+

ρed(Kq + 2Gq)Λs

Gq(d + 2)[dKq + 2(d − 1)Gq]

=
1

dcLq
2
Λh +

1

d + 2

(
2

dcLq
2
+

1

cTq
2

)
Λs. (22)

The integral equation (15) is written in a compact linear operator form as

ε = ε0 + GP. (23)

Excluding the contribution from the exclusion region in (23), we define generalized cavity strain tensor:

f = ε0 + HP. (24)

Use of (13), (23), and (24) demonstrates that P and f are directly related as follows:

P (x) =
[
L(q)I(p) (x)

]
: f (x) , (p �= q) (25)

where

L(q) ≡
(

Cp − Cq

)
/ρq :

[
I + D(q) :

(
Cp − Cq

)
/ρq

]−1

= dcLq
2

[
κpqΛh +

(d + 2)cTq
2

dcLq
2 + 2cTq

2
μpqΛs

]
, (26)

κpq and μpq are the scalar polarizabilities for bulk and shear moduli, respectively, defined by

κpq =
Kp − Kq

Kp + 2(d − 1)Gq/d
, (27)

μpq =
Gp − Gq

Gp +
[
dKq/2 + (d + 1)(d − 2)Gq/d

]
Gq/(Kq + 2Gq)

. (28)

Note that equations (22) and (26) are identical to their static counterparts [21, 22, 72] up to a multiplicative
factor ρq.

We now find a series expansion for the following homogenized constitutive relation

〈P〉 (x) = L(q)
e

(
kLq

)
: 〈 f 〉 (x) , (29)

6
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where 〈·〉 denotes an ensemble average, and the effective constant tensor L(q)
e

(
kLq

)
is explicitly given as

L(q)
e

(
kLq

)
=
[
Ce

(
kLq

)
− Cq

]
/ρe :

{
I + D(q) :

[
Ce

(
kLq

)
− Cq

]
/ρe

}−1
. (30)

To do so, we solve P (x) in terms of ε0 by iteratively substituting (24) and (25). We then obtain the relation
(29) from the aforementioned expansion and an ensemble average of (24) by eliminating ε0 in order to
avoid conditional convergence problems.

Following the strong-contrast formalism of Torquato [21, 22], we obtain an expression of the effective
tensor L(q)

e in the form of series expansion:

φp
2L(q) : [L(q)

e

(
kLq

)
]−1 = φp

2L(q) :
{

I + D(q) :
[
Ce

(
kLq

)
− Cq

]
/ρe

}
:
{[

Ce

(
kLq

)
− Cq

]
/ρe

}−1

= φpI −
∞∑

n=2

B(p)
n

(
kLq

)
, (31)

where

B(p)
2

(
kLq

)
=

∫
ε

dx2 U (q) (x1 − x2)χV (x1, x2) , (32)

B(p)
n

(
kLq

)
= (−1)n(φp)−(n−2)

∫
ε

dx2 · · · dxnU (q) (x1 − x2) : U (q) (x2 − x3) : · · · : U (q) (xn−1, xn)

×Δ(p)
n (x1, x2, · · · , xn) , n � 3, (33)

U (q) (r) ≡ L(q) : H(q) (r), and Δ(p)
n is a position-dependent determinant involving up to the n-point

correlation function associated with the dispersed phase p, i.e.

Δ(p)
n (x1, · · · , xn) =

∣∣∣∣∣∣∣∣∣∣

S(p)
2 (x1, x2) S(p)

1 (x1) · · · 0

S(p)
3 (x1, x2, x3) S(p)

2 (x2, x3) · · · 0
...

...
. . .

...
S(p)

n (x1, · · · , xn) S(p)
n−1 (x2, · · · , xn) · · · S(p)

2 (xn−1, xn)

∣∣∣∣∣∣∣∣∣∣
. (34)

Here, S(p)
n (x1, · · · , xn) is the n-point correlation function defined as

S(p)
n (x1, · · · , xn) ≡

〈
I(p) (x1) · · · I(p) (xn)

〉
, (35)

which gives the probability for simultaneously finding n points at x1, x2, · · · , xn in phase p [22, 70]. Here, it
is important to note that the integrals (32) and (33) are absolutely convergent because while H(q) (r) decays
as r−d for large r, Δ(p)

n identically vanishes at the boundary of the specimen [22]. Therefore, this proves that
the effective elastodynamic properties in the infinite-volume limit are independent of the shape of the
ellipsoidal composite shown in figure 1. The detailed derivation of the strong-contrast expansion (31) is
given in the SM. Importantly, the exact series expansion (31) accounts for complete microstructural
information (infinite set of n-point correlation functions) and hence multiple scattering to all orders in the
quasistatic regime.

Remarks.

(a) Importantly, the strong-contrast expansion (31) is a series representation of a linear fractional
transformation of the effective stiffness tensor Ce

(
kLq

)
(left-hand side). The series expansion in powers

of the polarizabilities κpq and μpq of this particular rational function of Ce

(
kLq

)
has important

consequences for the predictive power of approximations derived from the expansion. While this
desirable feature is briefly discussed below, the reader is referred to reference [24] for detailed
explanations for the corresponding electromagnetic problem. We note that the strong-contrast
formalism is a significant departure from standard perturbative expansions that lead to ‘weak-contrast’
expansions in which the expansion parameters are simple differences in the phase moduli, implying
that they converge only for small contrast ratios [21, 22].

(b) The homogenized constitutive relation (29) is local in space (i.e. 〈P〉 (x) at point x depends on 〈f 〉 (x) at
the same position x) and strictly valid in the long-wavelength regime. In such a regime, the effective
elastic moduli are independent of the direction of incident waves, as shown in the expansion (31). For
shorter wavelengths, however, the associated relation must be nonlocal in space (i.e. 〈P〉 (x) at point x
depends on 〈f 〉

(
x′) at positions around x), which can result in ‘wavevector’-dependent effective elastic

moduli, as was rigorously shown for the analogous electromagnetic wave problem [24].

7
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(c) Note that the expansion (31) represents two different series: one for q = 1 and p = 2 and the other for
q = 2 and p = 1.

(d) In the static limit (ω → 0), the series (31) reduce to one derived for the static strong-contrast
expansions [20–22].

(e) In contrast to its static counterpart, the n-point microstructure-dependent tensors B(p)
n

(
kLq

)
given in

equations (32) and (33) are functions of a frequency ω of the elastic waves or, equivalently, the
longitudinal and transverse wavenumbers kLq and kTq . Throughout this work, we use kLq as an

independent variable, instead of ω or kTq , for the following three reasons. First, the tensor H(q) (r) as
well as the effective stiffness tensors are conveniently written in terms of kLq . Second, kLq is directly
proportional to ω and kTq (cf (9)). Furthermore, kLq is directly related to a length scale, which is
suitable for describing microstructural information rather than the temporal quantity ω.

(f) The exact expansions (31) are independent of the reference phase q and hence of the associated
wavenumber kLq .

(g) Note that the strong-contrast formalism for the elastodynamic problem shares similar mathematical
structure to the electromagnetic counterpart [23, 24]. In both cases, the wave equations can be
simplified to the Helmholtz equation (i.e.

(
∇2 + k2

)
u (x) = 0), which results in integral operator

descriptions of their expansions being formally identical. However, there are important fundamental
distinctions between the two problems. Among other things, while electromagnetic waves have only
transverse propagation modes, elastic waves always have both transverse and longitudinal modes with
different wave speeds. The interplay between these two propagation modes makes the theoretical
determination of the effective elastodynamic properties generally more complex than its
electromagnetic counterpart.

2.2. Macroscopically isotropic media
Here we assume that the composite is macroscopically isotropic. In this case, the effective stiffness tensor Ce

can be expressed in the effective bulk and shear moduli (denoted by Ke and Ge, respectively). Then, the
series expansion (31) can be reduced to

φp
2

[
κpq

κeq

(
kLq

)Λh +
μpq

μeq

(
kLq

)Λs

]
= φpI −

∞∑
n=2

B(p)
n

(
kLq

)
. (36)

Utilizing the properties of two tensors Λh and Λs (see the SM [69]), one can separate (36) into two
expansions by taking the quadruple inner products of Λh and Λs with (36). One is associated with the
effective bulk modulus, and the other is related to the effective shear modulus:

κeq

(
kLq

)
≡

Ke

(
kLq

)
− Kq

Ke

(
kLq

)
+ 2(d − 1)Gq/d

=
φp

2κpq

φ−
∑∞

n=2 C(p)
n

(
kLq

) , (37)

μeq

(
kLq

)
≡
[
Ge

(
kLq

)
− Gq

] {
Ge

(
kLq

)
+
[
dKq/2 + (d + 1)(d − 2)Gq/d

]
Gq/(Kq + 2Gq)

}−1

=
φp

2μpq

φp −
∑∞

n=2 D(p)
n

(
kLq

) , (38)

respectively, where C(p)
n

(
kLq

)
≡ B(p)

n

(
kLq

) :
: Λh and D(p)

n

(
kLq

)
≡ 2[(d + 2)(d − 1)]−1B(p)

n

(
kLq

) :
: Λs. Note

that C(p)
n

(
kLq

)
and D(p)

n

(
kLq

)
involve the powers κpq

mμpq
n−m, where an integer m lies between 0 and n.

Assuming that the composite is passive (i.e. it does not generate mechanical energy), and the
time-harmonic factor of waves is e−iωt, the imaginary parts of the effective elastic moduli must be
non-positive, implying that

Im[Ke

(
kLq

)
] � 0, Im[Ge

(
kLq

)
] � 0,

for any non-negative kLq . In light of these properties, we have

Im

[
κpq

∞∑
n=2

C(p)
n

(
kLq

)]
� 0, (39)

Im

[
μpq

∞∑
n=2

D(p)
n

(
kLq

)]
� 0. (40)
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The effective elastic wave characteristics, including wave speeds cL,T
e and attenuation coefficients γL,T

e , are
directly related to the effective moduli as follows:

cL
e + iγL

e ≡
√

[Ke

(
kLq

)
+ 2(1 − 1/d)Ge

(
kLq

)
]/ρe, (41)

cT
e + iγT

e ≡
√

Ge

(
kLq

)
/ρe, (42)

where ρe = ρp = ρq, and the superscripts L and T denote longitudinal and transverse waves, respectively.
Note that exp(−2πγL

e /cL
e ) and exp(−2πγT

e /cT
e ) represent the factors by which the amplitudes of the

incident waves are attenuated inside the composite for a period of time 2π/ω. Thus, if γL
e = γT

e = 0 at
certain wavenumbers (or frequencies), the composite is perfectly transparent, i.e. elastic waves propagate
without any loss.

Remarks.

(a) Any statistically isotropic medium is macroscopically isotropic, but the converse is not true. For
example, while cubic lattice packings are statistically anisotropic, they are macroscopically isotropic due
to the cubic symmetry (see section 4.2).

(b) The dynamic strong-contrast expansions represented by (37) and (38) possess fast-convergence
properties for a wide class of microstructures, even at extreme phase contrast ratios (see reference [24]
for detailed explanations). Such convergence properties are attributed to the following two aspects.
First, even for extreme contrast ratios Kp/Kq or Gp/Gq, the two expansion parameters κpq and μpq are
rational functions of the phase moduli and bounded by

−∞ < −
[

d2(d − 1)

1 + νq
− d(d − 1)2

]−1

� κpq < 1,

− 2d

(d − 2)(d + 1)
�
[

d

2
− 3(d + 2)(2νq − 1)

2d(5νq − 4)

]−1

� μpq < 1,

where νq is the Poisson ratio of the reference phase q. Secondly, as Torquato [20, 21] observed, the
strong-contrast expansions in the static limit can be regarded to be ones that perturb around the wide
class of optimal structures [20, 21, 73], including the optimal multiscale Hashin–Shtrikman
‘coated-spheres’ assemblages. The reader is referred to references [20, 21] for details. It suffices to note
here that such optimal two-phase media are characterized by a disconnected dispersed phase that is
distributed throughout a connected matrix. These observations imply that the first few terms of the
expansions (37) and (38) can yield accurate approximations of the effective properties for a class of
particulate composites as well as more general microstructures, even for extreme contrast ratios,
provided that the dispersed phase is prevented from forming large clusters compared to the specimen
size. Depending on whether the high-stiffness phase percolates or not, this broad microstructure class
includes particulate media consisting of identical or polydisperse particles of general shape (ellipsoids,
cubes, cylinders, polyhedra) that may or not overlap, cellular networks [73] as well as media without
well-defined inclusions. The reader is referred to reference [24] for a more detailed discussion of this
issue.

3. Approximations at the two-point level

Due to the fast-convergence properties of strong-contrast expansions, their truncations at low orders should
yield accurate approximations for the effective bulk and shear moduli for the aforementioned wide class of
microstructures over a broad range of volume fractions and contrast ratios; see also reference [24] for
additional details. In what follows, we present such approximations by truncating the strong-contrast
expansions after the second-order term. The corresponding approximations at the three-point level are
presented in appendix A. Detailed derivations are provided in section I in the SM [69].

Truncating (37) and (38) at the two-point level and solving the left-hand sides of these truncated series
for Ke and Ge, respectively, yields

Ke

(
kLq

)
Kq

= 1 +

[
cLq

2

cLq
2 − 2(1 − 1/d)cTq

2

]
φp

2κpq

φp(1 − φpκpq) − C(p)
2

(
kLq

) , (43)

Ge

(
kLq

)
Gq

= 1 +

[
d(d + 2)cLq

2/2

dcLq
2 + 2cTq

2

]
φp

2μpq

φp(1 − φpμpq) − D(p)
2

(
kLq

) , (44)

9
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where C(p)
2

(
kLq

)
and D(p)

2

(
kLq

)
are defined respectively as

C(p)
2

(
kLq

)
=

π

2d/2Γ
(

d/2
)F (kLq

)
κpq, (45)

D(p)
2

(
kLq

)
=

π

2d/2Γ
(

d/2
) dcLq

2F
(
kTq

)
+ 2cTq

2F
(
kLq

)
dcLq

2 + 2cTq
2

μpq, (46)

and the local attenuation function F (Q) is defined as

F (Q) ≡ −2d/2Γ
(
d/2
)

π
Q2

∫
i

4

(
Q

2πr

) d−2
2

H(1)
d/2−1 (Qr) χV (r) dr (47)

= − Γ
(
d/2
)

2d/2πd+1
Q2

∫
χ̃V (q)

|q|2 − Q2
dq, (48)

where Γ (x) is the gamma function, H(1)
ν (x) is the Hankel function of the first kind of order ν,

χV (r) ≡ S(p)
2 (r) − φp

2 is the radial autocovariance function, and the spectral density χ̃V (Q) is its Fourier
transform. Some important properties of F (Q) are given in appendix C. Use of these properties of F (Q)
immediately shows that in the static limit (ω = 0), the parameters C(p)

2 (0) and D(p)
2 (0) are identically zero,

which is consistent with previous studies [22, 72].
Remarkably, F (Q) also appears in the quasistatic strong-contrast approximations for the

electromagnetic characteristics [23, 24]. This commonality between the two wave problems at the two-point
level allowed us to establish cross-property relations for the effective elastic and electromagnetic wave
characteristics in reference [67].

4. Improved approximations at the two-point level

In order to extend the series expansions and approximations discussed in section 2.1–section 3 beyond the
quasistatic regime, one needs to generalize the strong-contrast expansion formalism to theories of
elastodynamics that are nonlocal in space (see a recent review [74]) from first principles, as we did for the
electrodynamic problem in reference [24]. Unlike the dielectric problems, however, such generalizations are
nontrivial in the case of the elastodynamic problem because an elastically isotropic medium generally
possesses multiple elastic wavenumbers at a given frequency ω.

4.1. Nonlocal strong-contrast approximation
Based on the following two observations, we postulate nonlocal strong-contrast approximations for the
effective elastodynamic properties at the two-point level that are expected to be accurate beyond the
quasistatic regime. First, the local strong-contrast expansions for the elastodynamic and electromagnetic
problems are similar in that the local attenuation function F (Q), given by (47), appears in the local
strong-contrast approximations of the effective dielectric constant that was rigorously derived in reference
[23]; see also reference [24]. Second, guided by our exact formulation of the nonlocal effective
electromagnetic characteristics [24], such generalizations at the two-point level are tantamount to replacing
the wavenumber-dependent local attenuation function F (Q), defined in (47), with the
wavevector-dependent nonlocal attenuation function F (Q) defined by [24, 67]

F (Q) ≡ −2d/2Γ
(
d/2
)

π
Q2

∫
i

4

(
Q

2πr

)d/2−1

H(1)
d/2−1 (Qr) e−iQ·rχV (r) dr (49)

= − Γ
(
d/2
)

2d/2πd+1
Q2

∫
χ̃V (q)

|q + Q|2 − Q2
dq. (50)

Unlike F (Q), F (Q) accounts for the contribution from spatial variation of the sinusoidal incident waves
exp(−iQ · r) and thus more accurately estimates the scattering effects of waves associated with wavevector
Q from the long- to intermediate-wavelength regimes. (Important properties of F (Q) for a statistically
isotropic medium are provided in appendix C.) From these two observations, it is reasonable to assume that
one can extend the range of applicable wavelengths by replacing F (Q) in the local strong-contrast
approximations at the two-point level (equations (43) and (44)) with F (Q), which are numerically verified

10
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in section 4.2. The resulting approximations are given respectively by

Ke

(
kLq

)
Kq

= 1 +

[
cLq

2

cLq
2 − 2(1 − 1/d)cTq

2

]
φp

2κpq

φp(1 − φpκpq) − π
2d/2Γ(d/2)

F
(

kLq

)
κpq

, (51)

Ge

(
kLq

)
Gq

= 1 +

[
d(d + 2)cLq

2/2

dcLq
2 + 2cTq

2

]

× φp
2μpq

φp(1 − φpμpq) − π
2d/2Γ(d/2)

dcLq
2F

(
kTq

)
+2cTq

2F
(

kLq

)

dcLq
2+2cTq

2 μpq

, (52)

where kLq and kTq are the longitudinal and transverse wavevectors of the incident waves, respectively, and
F (Q) is given in (49). We emphasize that the nonlocal strong-contrast approximations for both elastic and
electromagnetic properties share a common microstructure-dependent parameter F (Q), which enabled us
to establish cross-property relations linking those properties in reference [67]. Note that, as we shown in a
recent paper [24], the analytic properties of F

(
|Q|
)

lead the nonlocal approximations (51) and (52) satisfies
Kramers–Kronig relations for elastic waves [75, 76]. (These nonlocal approximations were first postulated
in reference [67] on physical grounds for establishing the cross-property relations.)

For a statistically isotropic composite, as shown in (51) and (52), the imaginary part of F
(
|Q|
)

directly
determines the degree of attenuation, i.e. Im[Ke] and Im[Ge] or, equivalently, γL

e and γT
e defined in (41) and

(42). In the quasistatic regime, assuming that the spectral density has the power-law scaling χ̃V (Q) ∼ Qα,
the effective attenuation coefficients γL,T

e

(
kLq

)
exhibit

γL,T
e

(
kLq

)
∼ Im[F

(
kLq

)
]

∼

⎧⎨
⎩kLq

3, nonhyperuniform (α = 0)

kLq
3+α, hyperuniform (α > 0)

, as kLq → 0+, (53)

where nonhyperuniform systems take α = 0, whereas hyperuniform ones take α > 0 (see appendix C).
Thus, hyperuniform media are less lossy than their nonhyperuniform counterparts as the wavenumber
tends to zero. Remarkably, the stealthy hyperuniform media are perfectly transparent up to a finite
wavenumber:

γL,T
e

(
kLq

)
= 0, if 0 � kLq �

cTq

cLq

QU

2
, (54)

where cTq/cLq =
√

(1 − 2νq)/[2(1 − νq)], and νq is the Poisson ratio of the reference phase q.

4.2. Comparison of simulations to various approximations
Here we compare various approximations formulas for the effective dynamic elastic moduli to computer
simulations, which are highly nontrivial calculations. In particular, we utilize our fast-Fourier-transform
(FFT) numerical scheme presented elsewhere [67]. This procedure extends the one first devised for the
effective static elastic moduli [77] in order to treat elastodynamics. The reader is referred to the SM [69]
and reference [67] for details.

In order to ensure convergence of the simulation procedure, we choose to study simple cubic lattice
packings in which identical spheres of radius a of phase 2 are embedded in the matrix phase (phase 1).
While the periodic packings are macroscopically isotropic, due to cubic symmetry, they are statistically
anisotropic, implying that effective properties can depend on the direction of the incident wave kL1 . For
simplicity, we only consider the case where kL1 is aligned with one of the minimal lattice vectors, i.e. Γ–X
direction in the first Brillouin zone. Simple cubic lattice packings also provide stringent tests of the
predictive power of the approximations at finite wavenumbers because they exhibit two salient and
nontrivial elastic properties due to spatial correlations at intermediate length scales: transparency up to
finite wavenumbers associated with the edges of the first Brillouin zone (i.e. Im[Ke] = 0 for 0 � kL1 � π
and Im[Ge] = 0 for 0 � kT1 � π), and resonance-like attenuation due to Bragg diffraction within the
phononic bandgap (i.e. a peak in the imaginary parts or, equivalently, a sharp transition in the real parts).

We perform simulations for the case of simple cubic lattice of spheres in a matrix in which the packing
fraction is φ2 = 0.05, contrast ratios are K2/K1 = G2/G1 = 2, and the Poisson ratio of the reference phase
is ν1 = 1/3. In figure 2, we compare the simulation results to the predictions from the strong-contrast
approximations (equations (43) and (44) for local approximations, and equations (51) and (52) for the
nonlocal counterparts) as well as the GUA ((B.1) and (B.2)). While all approximations agree with the
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Figure 2. Comparison of the predictions of the local strong-contrast approximations (equations (43) and (44)), the nonlocal
variants (equations (51) and (52)) and GUA (equations (B.1) and (B.2)) for the effective dynamic bulk Ke

(
kL1

)
and shear

Ge

(
kL1

)
moduli as functions of dimensionless wavenumber kL1 L of periodic packings to the corresponding simulation results.

We consider 3D cubic lattice packing of packing fraction φ2 = 0.05, contrast ratios K2/K1 = G2/G1 = 2, and Poisson ratio
ν1 = 1/3. Here, kL1 is the longitudinal wavenumber in the reference phase (phase 1) along the Γ–X direction, and L is the
nearest-neighbor distance.

Figure 3. Images of representative configurations of the four models of 2D disordered particulate media described in section 5.
While we focus on 3D models in this work, we present 2D images for the purpose of visualization. These include (a) overlapping
spheres, (b) equilibrium (hard-sphere) packings, (c) class I hyperuniform polydisperse packings, and (d) stealthy hyperuniform
packings. The dispersed and matrix phases are shown in blue and red, respectively. All models have an identical volume fraction
of the disperse phase φ2 = 0.25. Note that (a) and (b) are nonhyperuniform.

simulations in the quasistatic regime, the GUA and local strong-contrast approximations fail to capture
properly two key features: no loss of energy up to finite wavenumbers and resonance-like attenuation in the
band gaps. However, the nonlocal strong-contrast approximations capture these two features and agree well
with the simulation results, even beyond the quasistatic regime.

5. Disordered model microstructures

Here, we describe the four models of 3D disordered two-phase media that are statistically isotropic to study
the microstructure-dependence of effective elastic properties. The models include two nonhyperuniform
systems (overlapping spheres and equilibrium packings) and two hyperuniform systems (class I
hyperuniform polydisperse packings and stealthy hyperuniform packings). In each mode, spherical particles
of phase 2 are distributed throughout a matrix phase (phase 1).

Figure 3 depicts representative images of these four models in two dimensions at the selected volume
fraction of the disperse phase φ2 = 0.25 for the purpose of visualization. Note that the degree of
volume-fraction fluctuations decreases from figures 3(a)–(d). We also compute the corresponding spectral
densities for these models in three dimensions and plot them in figure 4.

5.1. Overlapping spheres
Overlapping spheres (also called fully-penetrable-sphere model) refer to systems of identical spheres of
radius a whose centers are spatially uncorrelated in a matrix phase [22]. At a given number density ρ in
d-dimensional Euclidean space Rd, the autocovariance function of this model can be written analytically
[22]. For d = 3, it explicitly writes

χV (r) = exp

(
−ρv1 (a)

[
2Θ (x − 1) +

(
1 +

3x

2
− x3

2

)
Θ (1 − x)

])
− φ1

2, (55)
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Figure 4. The spectral density χ̃V (Q) as a function of dimensionless wavenumber Qa for the four models of 3D disordered
media at φ2 = 0.25: overlapping spheres, equilibrium packings, class I hyperuniform polydisperse packings, and stealthy
hyperuniform packings. For hyperuniform polydisperse packings, a is the mean sphere radius. The remaining models consist of
identical spheres of radius a.

where φ1 = exp(−ρv1 (a)) is the volume fraction of the matrix phase (phase 1), v1(a) = 4πa3/3 is the
volume of a sphere of radius a, x ≡ r/(2a), and Θ(x) (equal to 1 for x > 0 and zero otherwise) is Heaviside
step function. For d = 3, the particle phase (phase 2) percolates when φ2 � 0.29 (reference [78]). In this
work, we consider this model for φ2 well below the percolation threshold.

5.2. Equilibrium packings
Equilibrium packings are systems of identical hard spheres of radius a in the (Gibbs) equilibrium
distributions [22, 79]. Below freezing points, the Percus–Yevick solution [22, 79], which is analytically
solvable for odd values of d, well approximates the structure factors S (Q) of this model. For d = 3, the
analytic approximation of S (Q) is given by [22]

S (Q) =

(
1 − ρ

16πa3

q6

{[
24a1φ2 − 12(a1 + 2a2)φ2q2

+ (12a2φ2 + 2a1 + a2φ2)q4
]

cos(q)

+
[
24a1φ2q − 2(a1 + 2a1φ2 + 12a2φ2)q3

]
sin(q)

− 24φ2(a1 − a2q2)
})−1

, (56)

where q = 2Qa, a1 = (1 + 2φ2)2/(1 − φ2)4, and a2 = −(1 + 0.5φ2)2/(1 − φ2)4. Using this solution in
conjunction with the following formula [22, 27]

χ̃V (Q) = ρ

(
2πa

Q

)3

J2
3/2 (Qa) S (Q) (57)

yields the corresponding spectral density χ̃V (Q).

5.3. Hyperuniform polydisperse packings
Class I hyperuniform sphere packings with a polydispersity in size can be constructed from
nonhyperuniform progenitor point patterns via a tessellation-based procedure [55, 80]. Specifically, we
employ the centers of 3D configurations of equilibrium packings (section 5.2) at a packing fraction 0.45 and
particle number N = 1000 as the progenitor point patterns. We begin with the Voronoi tessellation [22] of
these progenitor point patterns. We then rescale the particle in the jth Voronoi cell Cj without changing its
center such that the packing fraction inside this cell is identical to a prescribed value φ2 < 1. The same
process is repeated over all cells. The resulting packing fraction is φ2 =

∑N
j=1 v1

(
aj

)
/VF = ρv1 (a), where ρ

is the number density of particle centers, VF is the volume of the periodic fundamental cell, and a
represents the mean sphere radius. In the small-|Q| regime, the spectral density of the resulting particulate
composites exhibit a power-law scaling χ̃V (Q) ∼ |Q|4, which are of class I.

5.4. Stealthy hyperuniform packings
Stealthy hyperuniform packings of identical spheres, which are also class I, are defined by the spectral
density vanishing around the origin; see (2). We obtain the spectral density from their realizations for d = 3
that are numerically generated via the following two steps. Specifically, we first generate stealthy
hyperuniform point configurations that include N particles in a fundamental cell F under periodic
boundary conditions via the collective-coordinate optimization technique [61–63], which amounts to
finding numerically the ground-state configurations for the following potential energy;

Φ
(

rN
)
=

1

VF

∑
Q

ṽ (Q) S (Q) +
∑
i<j

u
(
rij

)
, (58)
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where S (Q) is the structure factor of the particle centers,

ṽ (Q) =

⎧⎨
⎩1, 0 < |Q| � QU

0, otherwise
, (59)

and a soft-core repulsive term [81]

u (r) =

⎧⎨
⎩(1 − r/σ)2, r < σ

0, otherwise
. (60)

Different from the usual procedure [61–63], the interaction (58) used here also includes a soft-core
repulsive energy (60), as was done in reference [81]. Thus, the resulting configurations are still disordered
and stealthy hyperuniform, and their nearest-neighbor distances are larger than the length scale σ due to
the soft-core repulsion u (r). Finally, to create packings, we circumscribe the points by identical spheres of
radius a < σ/2 under the constraint that they cannot overlap. The parameters used to generate these
packings are summarized in the SM [69].

5.5. Spectral densities for the four models
Here, we plot the spectral density χ̃V (Q) for the four models for d = 3 at a selected particle-phase volume
fraction φ2 = 0.25. From the long- to intermediate-wavelength regimes (Qa � 4), their spectral densities
exhibit notable microstructure-dependence. For example, overlapping spheres have the largest degree of
volume-fraction fluctuations, followed by equilibrium packings. By contrast, in the small-wavelength
regime (Qa 
 4), all four curves collapse onto a single curve because these models consist of spheres of
similar sizes and thus have similar local structures.

6. Predictions from strong-contrast approximations

Having established the accuracy of the nonlocal strong-contrast approximations, (51) and (52), for simple
cubic lattice packings in section 4.2, we now apply them to predict the effective elastodynamic
characteristics of the four different disordered models discussed in section 5. Specifically, we study how the
effective elastic moduli (Ke

(
kL1

)
, Ge

(
kL1

)
), wave speeds cL,T

e

(
kL1

)
, and attenuation coefficients γL,T

e

(
kL1

)
vary with the microstructure. For simplicity, we take the matrix phase to be the reference phase (phase 1)
and the dispersed phase to be the polarized phase (phase 2).

Figure 5 shows the scaled effective wave characteristics (i.e. cL
e/cL1 and γL

e /cL
e for longitudinal waves and

cT
e /cT1 and γT

e /cT
e for transverse waves) vary with kL1 at fixed phase properties K2/K1 = 10, G2/G1 = 28,

and ν1 = 0.4 for the four models. While all models are effectively lossless (i.e., small values of γe) for a
range of wavenumber around the origin, they become increasingly lossy as the wavenumber increases; see
the lower panels of figure 5. In the quasistatic regime, as shown in the insets of figure 5, hyperuniform and
nonhyperuniform exhibit qualitatively different attenuation characteristics (cf (53)): hyperuniform
composites generally tend to be less lossy than their nonhyperuniform counterparts. Remarkably, stealthy
hyperuniform media can be perfectly lossless, even well beyond the quasistatic regime; see (54). Such
microstructure-dependence of the effective attenuation behaviors vividly demonstrates that γL,T

e can be
engineered by the spatial correlations of composites.

We now examine how the imaginary part Im[Ge] varies with the contrast ratio G2/G1 for the disordered
models for a given large wavenumber kLq inside the transparency interval (wavenumber ranges where the
imaginary parts of the effective bulk and shear moduli vanish) given in (54) for the stealthy hyperuniform
packing. Here, we fix the phase Poisson ratios to be ν1 = 0.4 and ν2 = 0.25, as we did for the case shown in
figure 5. These results are summarized in figure 6. The disparity in the attenuation characteristics across
microstructures widens significantly as the contrast ratio increases. Clearly, overlapping spheres are the
lossiest systems. Hyperuniform polydisperse packings can be nearly as lossless as stealthy hyperuniform
ones. Unlike the imaginary part, the real part Re[Ge] is virtually independent of model microstructure and
thus is not shown in this work. We also do not include the corresponding plot for Ke because its behavior is
qualitatively similar to that of Ge.

Since stealthy hyperuniform packings exhibit novel physical properties, such as perfect transparency, we
further study the effect of packing fraction φ2 on their effective elastic moduli Ke

(
kL1

)
and Ge

(
kL1

)
and the

effective Poisson ratio νe

(
kL1

)
. Specifically, we are interested in examining stealthy hyperuniform packings

consisting of auxetic particles of ν2 = −1 and a matrix phase with ν1 = 1/3 and G2/G1 = 10. Auxetic
(negative Poisson ratio) materials laterally dilate (shrink) in response to axial elongation (contraction) [83],
and are known to have superior energy-absorbing properties [84]. We first generate such packings at a
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Figure 5. Predictions of the approximations (51) and (52) for scaled effective (a) longitudinal and (b) transverse wave
characteristics, cL,T

e and γL,T
e , as a function of dimensionless wavenumber kL1 a for the four 3D models of disordered composites of

spheres of radius a and φ2 = 0.25. The Poisson ratios of the matrix and dispersed phases are ν1 = 0.4 and ν2 = 0.25,
respectively, and the phase contrast ratios are K2/K1 = 10, G2/G1 = 28, which correspond to glass beads in an epoxy matrix
[82]. Here, kL1 is the longitudinal wavenumber in the reference phase, and cL1 and cT1 are longitudinal and transverse wave
speeds, respectively. The insets in the lower panels are log-log plots of the respective larger panels.

Figure 6. Predictions of the nonlocal strong-contrast approximation (52) for the negative values of the imaginary part of the
effective shear modulus Im[Ge

(
kLq

)
] as a function of contrast ratio G2/G1 of the four disordered models, as per figure 5, at

volume fraction φ2 = 0.25 and wavenumber kL1 a = 0.3. The Poisson ratios of the matrix and dispersed phases are fixed at
ν1 = 0.4 and ν2 = 0.25.

Figure 7. Predictions of the nonlocal strong-contrast approximations (51) and (52) for the effective (a) bulk Ke and (b) shear Ge

moduli, and (c) effective Poisson ratio νe as a function of dimensionless wavenumber kL1 a for 3D stealthy hyperuniform
packings of contrast ratio G2/G1 = 10 at two different packing fractions: φ2 = 0.4 and QUa = 1.5 and φ2 = 0.25 and
QUa ≈ 1.33. The Poisson ratios of the matrix and dispersed phases are ν1 = 1/3 and ν2 = −1 (i.e. K2/K1 = 0), respectively. In
the lower panels of each figure, the negatives values of the corresponding loss tangents (cf (61)) are plotted. The insets in (a) and
(b) are magnifications of the respective lower panels.

packing fraction φ2 = 0.4 and QUa = 1.5, as described in section 5.4. Without changing particle positions,
we then shrink the sphere radii to attain a packing fraction φ2 = 0.25, whose stealthy regime is now
QUa ≈ 1.33.

In figure 7, we plot the effective bulk and shear moduli as well as the effective Poisson ratio using
approximations (10), (51) and (52). To quantify the damping characteristics of such composites, we also
include in this figure the corresponding loss tangents defined by

tan δXe ≡ Im[Xe]/Re[Xe], (61)

for some general effective property Xe, which are frequently measured in experiments. For the bulk and
shear moduli, the loss tangents represent the ratios of mechanically attenuated energy to the stored elastic
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energy [85]. We see that these stealthy dispersions are effectively auxetic, i.e. Re[νe] < 0 (see figure 7(c)).
Figure 7(a) reveals that such stealthy auxetic composites have exceptionally large loss tangent values in the
intermediate-wavelength regime, compared to typical values (� 10−1 as in the cases in figure 5), which
implies that they are excellent energy absorbers, as expected. The transparency interval (i.e.
tan δKe = tan δGe = 0) is slightly larger for the higher density packing with the higher stealthy cut-off value
QUa = 1.5a, as predicted by (54). The complex Poisson ratio implies that the lateral and axial vibrations are
out of phase. The absolute value of tan δνe is approximately proportional to the difference between the
shear and bulk loss factors (i.e. degrees of energy loss due to shear and compression); see reference [86].

7. Conclusions and discussion

Closed-form approximations of the effective dynamic elastic moduli derived previously only apply at long
wavelengths (quasistatic regime) and for very special macroscopically isotropic disordered composite
microstructures [16], namely, nonoverlapping spheres or spheroids in a matrix. In this work, we have
provided the theoretical underpinnings to substantially extend previous work in both its generality and
applicability. First, we derived exact homogenized constitutive relations for the effective dynamic elastic
stiffness tensor Ce

(
kLq

)
from first principles that are local in space. Second, our strong-contrast

representation of Ce

(
kLq

)
exactly accounts for complete microstructural information (n-point correlation

functions for n � 1) for general microstructures and hence multiple scattering to all orders in the quasistatic
regime. Third, we extracted from the exact expansions accurate local closed-form approximate formulas for
Ke

(
kLq

)
and Ge

(
kLq

)
, relations (51) and (52), which are resummed representations of the exact expansions

that incorporate microstructural information through the spectral density χ̃V (Q), which is easily
ascertained for general microstructures either theoretically, computationally or via scattering experiments.
Depending on whether the high-stiffness phase percolates or not, the wide class of microstructures that we
can treat includes particulate media consisting of identical or polydisperse particles of general shape
(ellipsoids, cubes, cylinders, polyhedra) with prescribed orientations that may or not overlap, cellular
networks as well as media without well-defined inclusions (section 2). Fourth, we extended these local
approximations beyond the quasistatic regime by postulating nonlocal formulas based on the similarities
between electrodynamic and elastodynamic problems and our rigorous formulation of the nonlocal
effective dynamic dielectric properties [24]. We carried out precise full-waveform elastodynamic
simulations for certain 3D benchmark models to validate the accuracy of our nonlocal formulas for
wavenumbers well beyond the quasistatic regime, i.e. 0 � kLq� � 1 (where � is a characteristic heterogeneity
length scale).

Having verified the accuracy of the postulated strong-contrast approximations (51) and (52) for
dispersions, we then applied them to the four disordered model microstructures in three dimensions (both
nonhyperuniform and hyperuniform) to investigate the microstructure-dependence of the effective elastic
wave characteristics. We demonstrated that disordered hyperuniform media are generally less lossy than
their nonhyperuniform counterparts. We also found that our approximations predict that disordered
hyperuniform media possess a transparency wavenumber interval (54) around which most
nonhyperuniform media exhibit strong attenuation. We note that using finite-element method calculations
and supercell techniques, Gkantzounis et al [66] showed that 2D stealthy hyperuniform packings should
exhibit a transparency interval for elastic waves, which are qualitatively consistent with our predictions.

The accuracy of our nonlocal closed-form formulas has important practical implications since one can
now use them to accurately and efficiently predict the effective wave characteristics well beyond the
quasistatic regime of a wide class of composite microstructures without carrying out computationally
expensive full-blown simulations. Thus, our nonlocal formulas can be used to accelerate the discovery of
novel elastodynamic composites by appropriate tailoring of the spectral densities and then constructing the
corresponding microstructures by using Fourier-space inverse methods [28]. For example, from our
findings, it is clear that stealthy disordered particulate media can be utilized as low-pass filters that transmit
elastic waves ‘isotropically’ up to a selected wavenumber. Of course, one could also explore the design space
of effective elastic wave properties of nonhyperuniform disordered composite media for potential
applications.

There are interesting open problems for future exploration. Could the exact local strong-contrast
expansions, such as (31) and (36), be generalized to the cases in which the mass densities of both phases are
different, i.e. ρ1 �= ρ2? This is a highly nontrivial extension. One possible approach to answer this question
is to introduce the concept of the dynamic matrix, which is used to derive dispersion relations for elastic
waves in simple harmonic lattices [87] in order to separate the local mass density ρ (x) and displacement
field u (x). Another challenging problem is the derivation of strong-contrast expansions of the effective
dynamic elastic moduli that are nonlocal in space from the first principles in the manner obtained for the
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electromagnetic problem [24]. This problem is also quite challenging partly because, unlike the
electromagnetic waves, one needs to account for the interplay between longitudinal and transverse
propagation modes of elastic waves at a given frequency. Finally, it desirable to formulate full-waveform
elastodynamic simulations for two-phase media that are more efficient than the dynamic FFT scheme used
here.
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Appendix A. Strong-contrast approximations at the three-point level

Here, we explicitly present strong-contrast approximations at the three-point level for the effective dynamic
elastic moduli in the quasistatic regime. Specifically, truncating (37) and (38) at the three-point level and
solving the left-hand sides of these truncated series for Ke and Ge, respectively, yields

Ke

(
kLq

)
Kq

= 1 +

[
cLq

2

cLq
2 − 2(1 − 1/d)cTq

2

]
φp

2κpq

φp(1 − φpκpq) − [C(p)
2

(
kLq

)
+ C(p)

3

(
kLq

)
]

, (A.1)

Ge

(
kLq

)
Gq

= 1 +

[
d(d + 2)cLq

2/2

dcLq
2 + 2cTq

2

]
φp

2μpq

φp(1 − φpμpq) − [D(p)
2

(
kLq

)
+ D(p)

3

(
kLq

)
]

, (A.2)

where the explicit formulas for the three-point parameters C(p)
3

(
kLq

)
and D(p)

3

(
kLq

)
are given respectively as

C(p)
3

(
kLq

)
= −

kd+2
Lq

22+dπd−2

∫∫
dr

rd/2−1

ds

sd/2−1

{
κpqμpq

(d + 2)cTq
2

dcLq
2 + 2cTq

2
H(1)

d/2+1

(
kLq r
)
H(1)

d/2+1

(
kLq s
)

P̂2 (̂r · ŝ)

+ κpq
2H(1)

d/2−1

(
kLq r
)
H(1)

d/2−1

(
kLq s
)}[

S(p)
3 (r, s, t) − S(p)

2 (r) S(p)
2 (s)

φp

]
, (A.3)

D(p)
3

(
kLq

)
=

2

d − 1

kd+2
Lq

22+dπd−2

cTq
2μpq

dcLq
2 + 2cTq

2

∫∫
dr

rd/2−1

ds

sd/2−1

(
−κpqP̂2 (r̂ · s)H(1)

d/2+1

(
kLq r
)
H(1)

d/2+1

(
kLq s
)

−
(d + 2)cTq

2μpq

dcLq
2 + 2cTq

2

{
d2P̂4 (̂r · s)

[
H(1)

d/2+3

(
kLq r
)
−

H(1)
d/2+3

(
kTq r
)

(
cTq/cLq

)d/2+3

]

×
[
H(1)

d/2+3

(
kLq s
)
−

H(1)
d/2+3

(
kTq s
)

(
cTq/cLq

)d/2+3

]

+
d − 2

4(d + 4)
P̂2 (r̂ · s)

[
4H(1)

d/2+1

(
kLq r
)
+ d

H(1)
d/2+1

(
kTq r

)
(
cTq/cLq

)d/2+3

]

×
[

4H(1)
d/2+1

(
kLq s
)
+ d

H(1)
d/2+1

(
kTq s
)

(
cTq/cLq

)d/2+3

]
+

d − 1

2(d + 2)

×
[

2H(1)
d/2−1

(
kLq r
)
+ d

H(1)
d/2−1

(
kTq r
)

(
cTq/cLq

)d/2+3

][
2H(1)

d/2−1

(
kLq s
)
+ d

H(1)
d/2−1

(
kTq s
)

(
cTq/cLq

)d/2+3

]})

×
[

S(p)
3 (r, s, t) − S(p)

2 (r) S(p)
2 (s)

φp

]
. (A.4)

Here t ≡ r − s, and

P̂4 (t) ≡ t4 − 6

d + 4
t2 +

3

(d + 2)(d + 4)
, (A.5)

P̂2 (t) ≡ dt2 − 1. (A.6)
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In the static limit (ω = 0), the three-point parameters (A.3) and (A.4) reduce to

C(p)
3 (0) =

(d + 2)cTq
2

dcLq
2 + 2cTq

2
κpqμpq

Γ
(
d/2 + 1

)2

πd

∫∫
dr

rd

ds

sd
P̂2 (̂r · ŝ)

[
S(p)

3 (r, s) − S(p)
2 (r) S(p)

2 (s)

φp

]

=
(d − 1)(d + 2)cTq

2

dcLq
2 + 2cTq

2
κpqμpqφqφpζp, (A.7)

D(p)
3 (0) =

2

d − 1

cTq
2

dcLq
2 + 2cTq

2
μpq

Γ
(
d/2 + 1

)2

πd

∫∫
dr

rd

ds

sd

(
κpqP̂2 (r̂ · ŝ) +

(d + 2)cTq
2

dcLq
2 + 2cTq

2
μpq

×
{

d − 2

d + 4

(dcLq
2 + 4cTq

2)2

4cTq
4

P̂2 (̂r · ŝ) +
d2(d + 2)2

4

(cLq
2 − cTq

2)2

cTq
4

P̂4 (r̂ · ŝ)

})

×
[

S(p)
3 (r, s, t) − S(p)

2 (r) S(p)
2 (s)

φp

]

=
2cTq

2φpφqμpq

dcLq
2 + 2cTq

2

{
κpqζp +

(d + 2)cTq
2μpq

dcLq
2 + 2cTq

2

[
d(d − 2)

4

2cLq
2 − (1 − 4/d)cTq

2

cTq
2

ζp

+
d3

4(d + 2)

(cLq
2 − cTq

2)2

c4
Tq

ηp

]}
, (A.8)

where the parameters ηp and ζp lie in a closed interval [0, 1]; see reference [22] and reference therein.

Appendix B. Gaunaurd–Überall approximation

Here we state explicit formulas for the GUA for the effective dynamic elastic moduli of an isotropic medium
composed of identical spheres of radius a in the quasistatic regime [16, 19]. The particles are in phase 2 of
mass density ρ2 and elastic moduli K2 and G2, and they are embedded in a matrix phase of ρ1, K1 and G1.

Since the GUA accounts solely for scatterings from a single particle in the mean-field treatments, it can
be regarded as the elastodynamic counterpart of the Maxwell–Garnett approximation [88]. The explicit
formulas for the effective bulk and shear moduli are given respectively as [16]

Ke

(
kL1

)
− K1

Ke

(
kL1

)
+ 4G1/3 − [ΓeR2(kL1 a)2 − iR3(kL1 a)3(Ke

(
kL1

)
− K1)]/3

=
φ2κ21

1 − [Γ2(kL1 a)2/(3K2 + 4G1) − i(kL1 a)3κ21/3]
, (B.1)

Ge

(
kL1

)
− G1

Ge

(
kL1

)
+ [3K1/2+4G1/3]G1

K1+2G1

= φ2μ21, (B.2)

where κ21 and μ21 are given in (27) and (28), respectively, ρe = ρ1 + φ2(ρ2 − ρ1), R represents the radius of
a specimen, which is often set to be zero [16], and Γi (for i = 2, e) are given as

Γi = K1 −
3

2
Ki −

2

3
G1 +

ρi

2ρ1

3K1 + 4G1

3Ki + 4Gi

[
Ki +

4

5

(
G1 +

2

3
Gi

)]
. (B.3)

Appendix C. Properties of the attenuation functions

Here, we present asymptotic behaviors of both attenuation functions F (Q) and F (Q), defined by (47) and
(49), respectively, for a statistically isotropic composite. We then briefly discuss the transparency condition
(54) for stealthy hyperuniform media. Both are functionals of the spectral density χ̃V (Q) and identical in
the quasistatic regime. Specifically, assuming that the spectral density has the power-law scaling
χ̃V (Q) ∼ Qα as Q → 0, the attenuation functions become

Im[F (Q)] = Im[F (Q)] ∼

⎧⎨
⎩Qd, nonhyperuniform(α = 0)

Qd+α, hyperuniform(α > 0)
, as Q → 0, (C.1)

Re[F (Q)] = Re[F (Q)] ∼ Q2, as Q → 0, (C.2)
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where α = 0 for nonhyperuniform systems, and α > 0 for hyperuniform systems. In the large-Q regime,
both types of attenuation functions exhibit considerably different scalings:

Im[F (Q)] ∼ Q−1, Re[F (Q)] → 2d/2Γ
(
d/2
)

π
φp(1 − φp) (> 0), as Q →∞ (C.3)

Im[F (Q)] ∼ Q, Re[F (Q)] → const. (< 0), as Q →∞, (C.4)

regardless of whether the composites are hyperuniform or not. The reader is referred to reference [24] for
derivations.

A two-phase composite is effectively lossless for elastic waves at a given frequency ω if and only if
Im[Ke

(
kLq

)
] = 0 and Im[Ge

(
kLq

)
] = 0, which are equivalent to Im[F

(
kLq

)
] = Im[F

(
kTq

)
] = 0 when

using the nonlocal approximations (51) and (52). One can show that these conditions are satisfied in the
transparency interval (54) for stealthy hyperuniform media (cf (2)).
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