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Abstract. Disordered stealthy many-particle systems in d-dimensional
Euclidean space R

d are exotic amorphous states of matter that suppress any
single scattering events for a finite range of wavenumbers around the origin in
reciprocal space. They are currently the subject of intense fundamental and prac-
tical interest. We derive analytical formulas for the nearest-neighbor functions of
disordered stealthy many-particle systems. First, we analyze asymptotic small-r
approximations and expansions of the nearest-neighbor functions based on the
pseudo-hard-sphere ansatz. We then consider the problem of determining how
many of the standard n-point correlation functions are needed to determine the
nearest neighbor functions, and find that a finite number suffice. Via theoreti-
cal and computational methods, we are able to compare the large-r behavior of
these functions for disordered stealthy systems to those belonging to crystalline
lattices. Such ordered and disordered stealthy systems have bounded hole sizes,
and thus compact support for their nearest-neighbor functions. However, we find
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that the approach to the critical-hole size can be quantitatively different, empha-
sizing the importance of hole statistics in distinguishing ordered and disordered
stealthy configurations. We argue that the probability of finding a hole close
to the critical-hole size should decrease as a power law with an exponent only
dependent on the space dimension d for ordered systems, but that this probabil-
ity decays asymptotically faster for disordered systems, with either an increase in
the exponent of the power law or a crossover into a decay faster than any power
law. This implies that holes close to the critical-hole size are rarer in disordered
systems. The rarity of observing large holes in disordered systems creates sub-
stantial numerical difficulties in sampling the nearest neighbor distributions near
the critical-hole size. This motivates both the need for new computational meth-
ods for efficient sampling and the development of novel theoretical methods for
ascertaining the behavior of holes close to the critical-hole size. We also devise a
simple analytical formula that accurately describes these systems in the under-
constrained regime for all r. These results provide a theoretical foundation for
the analytical description of the nearest-neighbor functions of stealthy systems in
the disordered, underconstrained regime, and can serve as a basis for analytical
theories of material and transport properties of these systems.

Keywords: random/ordered microstructures
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1. Introduction

In the study of disordered many-body systems, a large body of recent work (see [1]
and references therein) has promoted the concept of hyperuniformity [2] as a useful
principle for identifying exotic disordered systems with novel physical properties [1,
3–15]. Hyperuniformity refers to systems with an anomalous suppression of long-range
density fluctuations. More specifically, given a d-dimensional point process, one considers
the variance σ2

N (R) of the number of particles within a spherical window of radius
R as one uniformly varies the location of the window or averages over an ensemble.
Quantitatively, a hyperuniform system is one in which [2]

lim
R→∞

σ2
N(R)

v1(R)
= 0, (1)

where v1(R) = πd/2Rd/Γ(1 + d/2) is the volume of a d-dimensional sphere of radius
R. For typical disordered systems, σ2

N(R) grows as Rd, so the above ratio tends to a
positive constant. Thus, hyperuniformity is defined by an asympotically slow growth of
the number variance, which is a key measure of the density fluctuations associated to a
given scale in the system. Equivalently, one can also identify hyperuniformity through
the following condition on the structure factor S(k) (obtainable through the scattering
intensity) associated with the point process [2]:

lim
|k|→0

S(k) = 0. (2)

Note that this definition excludes the forward scattering contribution in the scatter-
ing pattern. The structure factor is related to the widely-used total correlation func-
tion h(r) = g2(r)− 1, where g2(r) is the pair correlation function, through a Fourier
transform [16]:
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S(k) = 1 + ρ

∫
Rd

e−ik·r h(r) dr. (3)

Thus, equation (2) amounts to the following sum rule on the two-point statistics of the
point process [1]:∫

Rd

h(r) dr = −1. (4)

There are many examples of hyperuniform systems, both ordered and disordered.
In the ordered case, we have trivially that all perfect crystals are hyperuniform, due
to the presence of a Bragg-peak spectrum. As a less trivial ordered example, we have
that perfect quasicrystals are also hyperuniform [17–19]. Disordered hyperuniform sys-
tems are considerably more exotic, since typical disordered systems such as liquids and
gases have S(k → 0) �= 0 [2]. Examples include avian photoreceptor patterns [20], per-
fect glasses [3], maximally random jammed packings [21–26], density fluctuations in
the large-scale structure of the Universe [27–30], fermionic point processes [31, 32], and
superfluid helium [33, 34].

In this article, we will focus on an important subset of hyperuniformity known as
stealthy hyperuniformity [4]. Stealthy hyperuniformity further generalizes the notion of
mimicking an aspect of a crystal’s long wavelength behavior while maintaining local
disorder. A stealthy hyperuniform system is one in which the structure factor vanishes
in an entire range of wavelengths near the origin [4]:

S(k) = 0, 0 < |k| < K. (5)

Crystals, due to their Bragg peaks, trivially satisfy this condition. Interestingly, one
can also find disordered systems that obey stealthy hyperuniformity [12, 36, 37]. An
example of the scattering pattern for a stealthy disordered system is compared to a
stealthy ordered system in figure 1. While both the ordered crystal and the disordered
pattern exhibit a spherical exclusion region with no scattering, the disordered pattern
exhibits the continuous scattering usually associated with liquids and gases everywhere
else in the domain [1, 37].

One of the most powerful techniques for studying stealthy hyperuniform systems is a
collective coordinate optimization procedure [4, 14, 15, 36–42] that involves finding the
ground states of a class of bounded pair potentials with compact support in Fourier space
[4, 40]. The highly degenerate ground states of such potentials are stealthy hyperuniform
by construction. This technique suggests the utility of defining a control parameter χ,
which is a dimensionless measure of the ratio of constrained degrees of freedom to the
total degrees of freedom in such an optimization procedure. In the thermodynamic limit,
this control parameter can be written [4, 37]

χ =
v1(K)

2ρd(2π)d
, (6)

where ρ is the number density of the point process. Since this formula involves only
the general properties of a stealthy system, such as the cutoff wavevector K, it can be
used to classify stealthy systems even beyond the collective coordinate framework. A
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Figure 1. Scattering patterns (structure factor) for two 2D stealthy hyperuniform
point processes and small corresponding representative samples of the underlying
real-space point processes (inset). (a) The scattering pattern of a triangular lattice
(see inset). (b) The scattering pattern of a disordered stealthy hyperuniform system
(see inset). Excluding the forward scattering contribution, both structure factors
exhibit the signature exclusion region around the origin in which there are no single-
scattering events, implying a suppression of density fluctuations from infinite down
to finite wavelengths. However, the disordered pattern lacks sharp Bragg peaks, with
the diffuse behavior of the scattering pattern away from the origin being closer to
that of a liquid. Note that while the stealthy disordered pattern possesses short-
range order more typical of a disordered liquid or gas (see inset), it has a bounded
hole size [5, 35].

system with a small χ (relatively unconstrained) is disordered, and as χ increases, the
short-range order increases within a disordered regime [4, 14, 15, 36–42]. Upon reaching
a critical value of χ, there is a phase transition to predominantly crystalline ground
states [4, 14, 15, 36–42].

While the stealthiness of crystals is a trivial outcome of Bragg scattering, disordered
stealthy systems display highly unusual statistical geometric properties. For example, all
stealthy hyperuniform systems have a bounded hole size [5, 35], meaning that one can-
not find a sphere devoid of particles above a certain radius, and an ‘anti-concentration’
property that strictly bounds the density from above in a large enough subset of the
system [35]. As a result of these crystal-like geometric properties and fluid-like short-
range order, the disordered variants exhibit novel physical properties with implications
for materials discovery. In particular, the isotropy of these disordered phases generates
direction-independent physical properties, in stark contrast to typical crystalline sys-
tems. For example, the study of disordered point processes, which can be mapped to
cellular dielectric networks, led to the first discovery of a material with isotropic pho-
tonic band gap [6–11], which enables the construction of free-form waveguides [8, 9, 11].
In addition, they possess certain nearly optimal transport properties (while remaining
isotropic) when used to model both inclusion-based and cellular composites [12, 13],
which emphasizes the importance of the underlying point process geometry. The link
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between the unique structural properties of stealthy disordered processes and their obvi-
ous utility for materials design is still not fully understood, but it has been conjectured
that the bounded hole size property plays a key role in producing their novel thermody-
namic and physical properties, including their desirable band gap, optical, and transport
behaviors [1].

However, there is still much we do not know about the fundamental structural prop-
erties of disordered stealthy processes. One such type of fundamental question involves
determining the analytical functional forms for the nearest-neighbor functions of a given
particle or void point in the system [43, 44]. These functions encode the statistical distri-
bution of intuitive geometric concepts such as the size of holes in a system, making them
good candidates for capturing the statistical properties of stealthy disordered processes,
which possess bounded hole sizes. These functions come in two general varieties: the
void nearest-neighbor functions, which identifies the nearest neighbor of an arbitrary
spatial point in the system, and the particle nearest-neighbor functions, which identify
the nearest neighbor of an arbitrary particle in the system. While these varieties are gen-
erally distinct, they can sometimes be related to each other for specific point processes,
such as equilibrium hard spheres [43, 44].

The nearest-neighbor functions and variants have played a key role in investigating
problems in a variety of scientific fields. These include the application of the Wigner
surmise in nuclear physics [31, 45], their fundamental appearance in the theory of liquids
and other amorphous systems [43, 44, 46–60], the study of astrophysical dynamics [61],
the characterization of membranes in cells [62], and the modeling of granular flows [63].
They have also been applied to the study of fundamental problems in the mathematical
discipline of discrete geometry, including the covering and quantizer problems [64].

In addition to their utility in describing systems of fundamental scientific and mathe-
matical interest, one can use them to derive statistics to characterize the microstructure
of complex materials. One example of such a derived quantity is the distribution of pore
sizes in a heterogeneous material [65, 66]. They can also be used to estimate transport
properties, such as the rate of a diffusion-controlled reaction [65, 67–69]. Determin-
ing accurate formulas for the nearest-neighbor functions of a system can thus aid in
materials discovery.

Based on strong theoretical and computational evidence, Zhang et al [5] formulated
the surprising conjecture that any stealthy system has the aforementioned bounded hole
size property, which was subsequently proven by Ghosh and Lebowitz [35]. It is impor-
tant to note that the converse is not true; there exist systems, such as random sequential
addition at the saturation state, that have bounded holes by construction but are not
stealthy [70, 71]. The nearest-neighbor functions of disordered stealthy systems have also
been studied computationally in light of their connection with transport properties [12],
and a few results are known based on analytical approximations we will use later in this
article [37]. However, to date, there has not been a systematic theoretical investigation
of their nearest-neighbor statistics, and little is known about their asymptotics as the
critical-hole radius (i.e. radius of the largest possible hole) rc is approached.

In this article, we obtain accurate theoretical expressions for these functions for
disordered stealthy hyperuniformity. The accuracy of our formulas is verified by com-
parison to simulations using procedures presented in [4, 5, 37, 41, 42]. We pay particular
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attention to the small-r behavior of the functions and asymptotics on approach to the
critical-hole size.

In the small-r regime, we are able to obtain a variety of approximations and bounds
due to the pseudo-hard-sphere ansatz [37], which is valid when considering stealthy point
processes with low to intermediate χ. In particular, we are able to derive small-r expan-
sions that can provide useful approximations, even outside the small-χ limit. We also
provide supporting evidence for a new conjecture on the validity of two upper bounds.
Going beyond the methods based on the pseudo-hard-sphere ansatz, we demonstrate
that the nearest-neighbor functions can be determined by a finite number of gn(r

n),
in contrast with the general case, which requires an infinite number of gn(r

n). In the
large-r regime, we consider the scaling behavior of these functions as they approach
the critical-hole size. We compare their behavior to that of ordered point configurations
through theoretical arguments and the analysis of simulation data. We encounter sub-
stantial numerical difficulty due to the rarity of finding holes close to the critical-hole
radius, which we argue is exacerbated in disordered systems due to the expectation that
the hole probability vanishes more quickly in the presence of disorder. This difficulty
points to the need for the development of more efficient simulation methods for these
exotic potentials as well as further research into theoretical methods for determining
the behavior of holes near the critical-hole radius. We also discuss a useful prescription
for linking the small-r and near-rc regime into an approximation accurate over all r, as
validated by comparison to simulations. Finally, we comment on the large-r asymptotic
behavior of the nearest-neighbor functions of stealthy systems at positive temperature,
where they lose their strict stealthiness property, and show that they are also expected
to lose their bounded holes property.

Section 2 covers the basic theory of the nearest-neighbor functions and stealthy
hyperuniform point processes. In section 3, we provide analytical bounds and approxi-
mations obtained through the pseudo-hard-sphere approximation valid at small-r. We
consider the problem of determining how many of the gn(r

n) are needed to determine
the nearest-neighbor functions of stealthy systems in section 4. Section 5 presents a
description of the asymptotic behavior near the critical-hole size of the nearest-neighbor
functions. Section 6 discusses the problem of linking the small and large-r regimes to
obtain expressions for the nearest-neighbor functions over all r. Section 7 describes
positive temperature results. In section 8, we summarize our findings and make some
concluding remarks.

2. Preliminaries

2.1. Definitions for nearest-neighbor functions

2.1.1. ‘Void’ quantities. The nearest-neighbor functions are special cases of the general
n-point canonical function and thus obey the same mathematical properties, such as
the rigorous bounds described below [72]. We will begin by defining the void nearest-
neighbor probability density function HV(r) as in [44]:

https://doi.org/10.1088/1742-5468/abb8cb 7
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HV (r) dr = probability that at an arbitrary located point in the system ,

the nearest point in the point process lies between r and r + dr. (7)

This probability density is also closely related to the pore-size probability density func-
tion of the two-phase system that forms when the points are decorated with spheres of
radius R [65]. Under this assumption, the pore-size function becomes [65]

P (δ) =
HV(δ +R)

φ1
, (8)

where φ1 is the volume fraction of the void phase.
The associated complementary cumulative distribution function, called the void

exclusion probability function, is given by [44]

EV(r) = 1−
∫ r

0

HV(r
′) dr′. (9)

This has the following interpretation [44]:

EV(r) = probability that given an arbitrary location in the void,

a ball of radius rcentered at that location is devoid of points. (10)

This definition is often given succinctly as the probability of finding a hole of radius r.
We can define a third nearest-neighbor function by expressing HV(r) in terms of a

conditional probability density GV(r) [44]

HV(r) = ρs1(r)GV(r)EV(r), (11)

where s1(r) is the surface area of a d-dimensional sphere of radius r. Thus, GV(r) has
the interpretation [44]:

ρs1GV(r) dr = probability of finding a particle between rand r + dr given that

one has found a hole of radius r. (12)

The asymptotic behavior of the function GV(r) is intimately related to the work
required to create a cavity of radius r in an equilibrium system at positive temperature
[47]. This enables one to relate the long-range behavior to the ratio of the pressure and
temperature of a system [47]:

GV(r →∞) =
p

ρkBT
. (13)

To assist in building intuition for the behavior of these functions, we note that the
Poisson point process has a void exclusion probability function of [73]

EV(r) = exp (−ρv1(r)) . (14)

One of the key features of the nearest-neighbor functions of stealthy systems
is their limited support due to their bounded hole size [5, 35], in contrast to
the infinite support of many disordered point processes, including the Poisson

https://doi.org/10.1088/1742-5468/abb8cb 8
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distribution. A more detailed comparison of the void nearest-neighbor functions
for several different physical systems is described in the supplementary material
(https://stacks.iop.org/JSTAT/00/103302/mmedia).

The nth moments 〈rn〉 of the functions HV(r) and EV(r) are important summary
statistics for a point process, and are defined by [64]

〈rn〉 =
∫ ∞

0

rnHV(r) dr = n

∫ ∞

0

rn−1EV(r) dr n ∈ Z
+. (15)

In particular, the first moment of HV(r) gives the mean distance lV from an arbitrary
location in the void to the nearest point of the process:

lV ≡ 〈r〉 =
∫ ∞

0

rHV(r) dr =

∫ ∞

0

EV(r) dr. (16)

2.1.2. ‘Particle’ quantities. One can also define a corresponding set of functions that
measure the nearest-neighbor statistics with respect to an arbitrary particle rather than
a void point. The particle nearest-neighbor distribution function is defined [44]:

HP(r) dr = probability that the nearest point to a point of the point

process lies between r and r + dr. (17)

We can define EP(r) and GP(r) in the same manner as for the void functions [44]:

EP(r) = 1−
∫ r

0

HP(r) dr (18)

HP(r) = ρs1(r)EP(r)GP(r). (19)

In general, the particle functions differ from the void functions for a given system,
but can sometimes be related to them for special systems. For example, the expression
for EP(r) for a Poisson point process is [44]

EP(r) = exp (−ρv1(r)) , (20)

which is the same as the expression for EV(r). In addition, the particle nearest-neighbor
functions can be determined from the void variants for hard-sphere systems [44]. We
note in passing that the relation between the void and particle variants of a given
statistical quantity are studied in the subject of Palm theory in stochastic geometry [74,
75]. The interested reader can refer to the supplementary material for a comparison of
the particle nearest-neighbor functions for a variety of physical systems.

The moments of HP(r) and EP(r) can be related to each in a similar manner to that
of the void quantities [64]:∫ ∞

0

rnHP(r) dr = n

∫ ∞

0

rn−1EP(r) dr n ∈ Z
+. (21)

The mean nearest-neighbor distance is the first moment of HP(r) or the integral over
EP(r) [43, 64]:

lP =

∫ ∞

0

rHP(r) dr =

∫ ∞

0

EP(r) dr. (22)

https://doi.org/10.1088/1742-5468/abb8cb 9
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2.1.3. Series and bounds. Importantly, the nearest-neighbor functions can be repre-
sented as a series expansion involving functionals of the standard n-point correlation
functions gn(r) [44]. For example, in the case of a translationally invariant point process,
the void exclusion probability can be written [44]:

EV(r) = 1 +
∞∑
k=1

(−1)k
ρk

k!

∫
gk(R

k)
k∏

j=1

Θ(r − |x−Rj|) dRj, (23)

where the value of x can be chosen arbitrarily. Note that this implies that the nearest-
neighbor functions incorporate partial information from higher-order distribution
functions.

This series has a fundamental geometric interpretation, which can be seen by con-
sidering the diagram given in figure 2. If one has a single point configuration, this figure
shows that one can compute EV(r) by computing the ratio of the volume outside a set
of covering spheres of radius r to the total volume in the process, normalized appropri-
ately by either the fundamental cell or by averaging over the Voronoi cells [55, 56, 76,
77]. The series (23) is then just the computation of this volume fraction through the
principle of inclusion–exclusion applied to the spheres. More precisely, for a single point
configuration, the above series (23) becomes [64]:

EV(r) = 1− ρv1(r) +
1

vF

∑
i<j

vint2 (xij ;r)−
1

vF

∑
i<j<k

vint3 (xij, xik, xjk ; r) + · · · , (24)

where vF is the volume of the fundamental cell. The series (23) is expected to truncate
exactly for any periodic system with a finite basis [64], such as the face-centered-cubic
lattice and the hexagonal-close-packed crystal. For example, in the case of the square
and triangular lattices, this series terminates at the two-body term [64]. However, as we
will discuss in section 5, it may also truncate for special disordered systems. We apply
this geometric formulation of the void nearest-neighbor functions in the numerically
sampling of computer-generated 1D stealthy configurations later in the article; see the
appendix A for details. In addition, this view of the void functions demonstrates their
close relation to important problems in discrete geometry [64]. For example, in the
covering problem, one defines the covering radius as the minimum radius of the spheres
in figure 2 required to cover all space [64]. Then, one can define the problem as a
search for the point configuration which minimizes the covering radius [64] at unit
density. While the covering radius is finite for any single periodic point configuration
with a finite basis, it is not necessarily finite for an arbitrary disordered point process.
However, in the case of stealthy point processes, it corresponds to the critical-hole radius
rc. It is worthwhile to note that the optimal configurations for the covering problem are
the triangular lattice in two dimensions and the body-centered-cubic lattice in three
dimensions [64, 78]. These lattices are also the entropically favored states for stealthy
systems in the ordered χ > 1/2 regime [41]. While we focus on the disordered regime in
this paper, these optimal configurations still play an important role, since for χ close to
1/2, the disordered stealthy configurations will show precursor characteristics of these
lattices.
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Figure 2. A disordered stealthy system decorated with spheres of radius r and
its Voronoi diagram. The average over the Voronoi cells of the ratio of the area
outside the spheres to the total area of the cell is EV(r). This picture of EV(r) also
demonstrates its relation to the covering problem, where the critical-hole radius rc
needed to cover all space is known as the covering radius [64].

Interestingly, this representation also forms a series of successive upper and lower
bounds, which is described by a powerful general formalism developed in [72]. For
example, for a homogeneous and isotropic point process, one has [31, 72]

EV(r) � 1, (25)

EV(r) � 1− ρv1(r), (26)

and

EV(r) � 1− ρv1(r) +
ρ2

2
s1(1)

∫ 2r

0

xd−1vint2 (x;r)g2(x) dx, (27)

where vint2 (x;r) is the intersection volume of two spheres of radius r a distance of x apart,
which is known analytically in any dimension [79]. In the first three space dimensions,
these intersection volumes can be expressed, respectively, as [65]

vint2 (x;r)

v1(r)
= Θ(2r − x)

(
1− x

2r

)
d = 1, (28)

vint2 (x;r)

v1(r)
=

2

π
Θ(2r − x)

[
cos−1

( x

2r

)
− x

2r

√
1− x2

4r2

]
d = 2, (29)

vint2 (x;r)

v1(r)
= Θ(2r − x)

[
1− 3

4

x

r
+

1

16

(x
r

)3
]

d = 3, (30)
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where Θ(x) denotes the Heaviside step function. The last inequality (27) exactly gives
EV(r) whenever only two-body terms contribute, such as in the case of the square and
triangular lattices in 2D [64]. In the disordered case, this series can be used to derive
low-r expansions for EV(r) by expanding g2(r) in powers of r [31]:

g2(r) ∼ a+ br2 (r → 0), (31)

where, for the purposes of simplification, we have used in advance the fact that there is
good evidence that the linear term in the preceding expansion vanishes for the types of
disordered stealthy hyperuniform systems considered in this article [37, 41]. The order
to which EV(r) can then be determined depends on the spatial dimension. In one and
two dimensions, one can obtain results of the form [31, 65]

EV(r) ∼ 1− ρv1(r) +
ρ2 a

2
v1(r)

2 (r → 0). (32)

In three and higher dimensions, one can obtain a fourth term [31, 65]:

EV(r) ∼ 1− ρv1(r) +
ρ2

2

(
av1(r)

2 + b
2d

d+ 2
r2v1(r)

2

)
(r → 0). (33)

We will derive expressions for the a and b coefficients valid at low and intermediate
values of χ in the next section.

One can repeat this analysis for HV(r),EP(r), and HP(r). One obtains the following
series expansions [44]:

HV(r) =

∞∑
k=1

(−1)k+1ρ
k

k!

∫
gk(R

k)
∂

∂r

k∏
j=1

Θ(r − |x−Rj|) dRj, (34)

EP(r) = 1 +

∞∑
k=1

(−1)k
ρk

k!

∫
gk+1(R

k+1)

k+1∏
j=2

Θ(r − |Rj −R1|) dRj, (35)

HP(r) =
∞∑
k=1

(−1)k+1ρ
k

k!

∫
gk+1(R

k+1)
∂

∂r

k+1∏
j=2

Θ(r − |Rj −R1|) dRj. (36)

Note that the sequence of partial sums can be written in the form [72]:

Wn =

n∑
k=0

X (k), (37)

where X represents one of the aforementioned functions, X(k) represents the kth term
of the series for that function, and we have reindexed the series for HV/P(r) to start at
k = 0. Then, one obtains bounds of the form [72]

X � Wn n even,

X � Wn n odd. (38)
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We will explicitly use the first two successive bounds on HV(r) and EP(r) [31]:

HV(r) � ρs1(r), (39)

HV(r) � ρs1(r)−
ρ2

2
s1(1)

∫ 2r

0

xd−1sint2 (x;r)g2(x) dx, (40)

EP(r) � 1, (41)

EP(r) � 1− Z(r), (42)

where sint2 (x;r) = ∂vint2 (x ; r)/∂r is the intersection surface area of two spheres of radius
r a distance x apart and Z(r) = ρs1(1)

∫ r

0
xd−1g2(x) dx is the cumulative coordination

number. We will also use the first bound on HP(r) [31]:

HP(r) � ρs1(r)g2(r). (43)

To obtain upper (lower) bounds on GV/P(r), one can match an upper (lower) bound
on HV/P(r) with a lower (upper) bound on EV/P(r) [31]. For example, in this paper, we
will use the bounds [31]:

GV(r) �
1

1− ρv1(r)
, (44)

GV(r) �
1− ρs1(1)

2s1(r)

∫ 2r

0
xd−1sint2 (x;r)g2(x) dx

1− ρv1(r) +
ρ2

2
s1(1)

∫ 2r

0 xd−1vint2 (x;r)g2(x) dx
, (45)

GP(r) �
g2(r)

1− Z(r)
. (46)

As in the case of EV(r), one can use an expansion for g2(r) to derive low-r expansions
for all of the nearest-neighbor functions. In one and two dimensions, one finds [31]

HV(r) ∼ ρs1(r)− ρ2av1(r)s1(r) (r → 0), (47)

GV(r) ∼ 1 + (1− a)ρv1(r) (r → 0), (48)

EP(r) ∼ 1− ρav1(r) (r → 0), (49)

HP(r) ∼ ρas1(r) (r → 0), (50)

GP(r) ∼ a (r → 0). (51)

In three dimensions, one finds [31]

HV(r) ∼ ρs1(r)− ρ2
[
av1(r)s1(r) +

24b

5
rv1(r)

2

]
(r → 0), (52)

GV(r) ∼ 1 + (1− a)ρv1(r)−
8ρb

5
r2v1(r) (r → 0), (53)

EP(r) ∼ 1− ρ

(
av1(r) +

3b

5
r2v1(r)

)
(r → 0), (54)
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HP(r) ∼ ρ

(
as1(r) +

12b

5
rv1(r)

)
(r → 0), (55)

GP(r) ∼ a+ br2 (r → 0). (56)

2.2. Stealthy hyperuniform point processes

The stealthy constraint given by equation (5) only involves the two-point information
contained in the point process. However, we will see it has implications for the form
of the nearest-neighbor functions, which incorporate higher-order information [72]. The
configurational space of all stealthy systems (defined by (5)) is infinitely large in the
thermodynamic limit and extremely complex, so we make a practical restiction of our
focus to a specific distribution over this space: the canonical ensemble as T → 0 [37,
41]. We will see that the study of this well-defined ensemble provides powerful generic
insights about stealthy systems.

2.2.1. Basic definitions for point processes. We introduce the general concepts appli-
cable to all point processes we will encounter throughout this article, using definitions
that, while not completely mathematically rigorous, will be sufficient for our purposes.
One can think of a d-dimensional point process as a configuration consisting of a count-
ably infinite number of points in R

d such that the density is well-defined [37]. If one has
an ergodic process, one can compute statistics of the point process such as the pair cor-
relation function g2(r) through either a volume average over a single point configuration
or through an ensemble average over many such configurations [65]. One important class
of ordered point processes are known as lattices , which are point processes described by
a set of linearly independent lattice vectors {v i} in R

d. The points are placed at the
integer combinations of these lattice vectors, so that the location of an arbitrary point
is described by the expression:

r =
d∑

i=1

mivi mi ∈ Z. (57)

One can generalize this notion to describe a periodic point process, which is an arbitrary
crystal , by including a finite set of basis vectors bn, which describe the position of the
particles in the fundamental cell given by the lattice vectors. Thus, the points of the
crystal are given by the union of the sets {rn}, where the members of the set for each
n are given by

rn =
d∑

i=1

miri + bn mi ∈ Z. (58)

One can then think of a disordered point process as one in which both the size of the
basis set and the volume of the fundamental cell grows to infinity, leaving the density
fixed.

2.2.2. Computer simulation. The above definition and ensemble lends itself easily to
computer simulation. We will use the collective-coordinate procedure pioneered in [37,
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41] for producing ground states in the canonical ensemble. Consider a finite system
with N particles under periodic boundary conditions. Then, the structure factor can be
evaluated at every k in the reciprocal lattice of the fundamental cell with the equation

S(k) =
1

N

∣∣∣∣∣
∑
i

e−ik·ri

∣∣∣∣∣
2

, (59)

where the sum ranges over all the particles in the fundamental cell and r i is the position
of the ith particle. Note that k = 0 in the above sum corresponds to the forward scat-
tering, and is correspondingly omitted from the definition of stealthy hyperuniformity.
In addition, observe that the structure factor has an intrinsic inversion symmetry:

S(k) = S(−k). (60)

One can then define a many-particle system in which the particles interact with energy
function [41]

Φ =
1

vF

∑
k<|k|�K

NS(k)− Φ0, (61)

where the sum ranges over the M independently constrained wavevectors and vF is the
volume of the fundamental cell. The constant Φ0 is determined by Parseval’s theorem,
and can be written [37, 41]:

Φ0 = (N(N − 1)− 2NM) . (62)

It is clear that all states of minimal energy Φ = −Φ0 are stealthy. One can then sample
the canonical ensemble by running a molecular dynamics simulation at a low tem-
perature (usually around 2× 10−4, 2× 10−6, and 1× 10−6 in 1, 2 and 3 dimensions,
respectively, see the appendix A). To obtain a ground state configuration, one mini-
mizes the energy of the molecular dynamics configuration using the L-BFGS algorithm
[41]. For more details about the algorithms used to generate configurations in this article;
see the appendix A.

The degree of short, intermediate, and long-range order depends on the control
parameter χ defined in equation (6). For finite systems, we define χ as [37]

χ =
M

d(N − 1)
, (63)

where M is the number of constrained degrees of freedom, N is the number of particles,
and d is the spatial dimension. We can recover equation (6) by going to the thermody-
namic limit [37]. It can be shown that the system undergoes an order–disorder transition
at χ = 1/3 in one dimension [38] and at χ = 1/2 in two and three dimensions [4, 14, 15,
36, 37, 39–42]. We will focus on the disordered low-χ regime.
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3. Pseudo-hard-sphere approximations to nearest-neighbor functions

We begin by deriving expressions useful at small-r for the nearest-neighbor functions
of our disordered stealthy point processes. These expressions are fundamentally based
on the pseudo-hard-sphere ansatz described below, and are valid for small enough χ.
We also make heavy use of the bounding series given in section 2. Throughout, we
will compare to simulation data either taken from [12] or produced by the procedure
described in the appendix A.

3.1. Basic theory

To use the upper and lower bounds on the nearest-neighbor functions given in section 2,
we must first determine an accurate expression for the pair correlation function g2(r).
Torquato et al [37] developed an analytical theory valid at sufficiently small χ in the
limit of large systems, justifying their work through direct simulations of stealthy sys-
tems. They make the ansatz that the structure factor follows the behavior of the pair
correlation function of a hard-sphere system at a density related to χ (defined by (6)),
namely,

S(k) = gHS
2 (r = k), (64)

where gHS
2 (r) is the pair correlation function for a hard-sphere system of diameter K

and packing fraction

η =
χ

α(K ;K)2d
, (65)

where α(r ;R) = vint2 (r ;R)/v1(R) is the scaled intersection volume of two spheres of
radius R separated by r. This approximation closely follows the simulated S(k) and
g2(r) for χ � 0.15 [37, 41]. We will use this approximation as a starting point to derive
theories valid at small enough values of r. In particular, we will make use of the following
low-χ expansion [37]:

S(k) ≈ Θ(k −K)

(
1 + χ

α(k ;K)

α(K ;K)

)
, (66)

valid in any dimension. We will also use the generalized Ornstein–Zernike relation [37]

H̃(k) = C̃(k) +
η

v1(K/2)
H̃(k)⊗ C̃(k), (67)

where H̃(k) = S(k)− 1 and C̃(k) = cHS(r = k), where cHS(r) is the standard direct cor-
relation function [16] for the aforementioned hard-sphere system. For a more detailed
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Figure 3. Bounds and approximations of the nearest-neighbor functions based on
the pseudo-hard-sphere approximation for 1D stealthy systems. (a)–(c) Void func-
tions for a system at χ = 0.10, which is within the applicability of the pseudo-hard-
sphere approximation. (d)–(f) Void functions for a system at χ = 0.33, outside the
applicability of the pseudo-hard-sphere approximation. (g)–(i) Particle functions
for a system at χ = 0.10. (j)–(l) Particle functions for a system at χ = 0.33.

discussion of the pair statistics of disordered stealthy systems; see the supplementary
material.
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3.2. 1D results

In one dimension, the expression (66) can be inverted analytically to obtain g2(r). We
plot the results of numerically integrating this g2(r) with the bounds given in section 2
in figure 3. We see that this approximation does quite well at low χ.

Furthermore, we can derive an analytical expression for the g2(r) of a stealthy system
using exact results for hard spheres. We take the well-known exact solution for the direct
correlation function of a hard-rod system and interpret it as the Fourier transform of
the direct correlation function for the stealthy system [37]:

C̃(k) = −Θ(K − k)
1− χk/K

(1− η)2
. (68)

We used this expression in equation (67), and analytically took the Fourier inversion.
The resulting expression for g2(r) was used to evaluate the bounds in section 2 through
numerical quadrature. In figure 3, we verify that these expressions form upper bounds at
low χ as expected. In addition, they remain useful approximations for the void quantities
even when the pseudo-hard-sphere approximation for g2(r) breaks down at intermediate
χ. However, in the case of the particle quantities, the break down of the pseudo-hard-
sphere approximation creates significant inaccuracies at intermediate χ.

We can use the same approximation for g2(r) to obtain the low-r series for the
nearest-neighbor functions. We obtain the coefficient a:

a = 1− 2χ+ χ2. (69)

For reference, we also show two tentative upper bounds, yet to be proven rigorously,
even in the pseudo-hard-sphere approximation. Note that combining equations (9) and
(11) gives [44]

EV/P(r) = exp

(
−ρs1(1)

∫ r

0

xd−1GV/P(x) dx

)
. (70)

Now, we make a conjecture based on observations from simulations (see the supplemen-
tary material for details), that

GP(r) � g2(r), (71)

yielding the putative upper bound

EP(r) � e−Z(r). (72)

While this bound was previously presented in the context of stealthy systems in [37], it
was not actually proved there. It is noteworthy that the bound is not generally obeyed by
any isotropic, homogeneous and ergodic point processes. Thus, its proof must involve
some nontrivial feature of the stealthy process, such as its propensity to cluster to a
lesser degree than a Poisson process (this can be through the observation that g2(0) < 1
for χ > 0). Comparison of the relation (72) to data in figure 3 reveals that it indeed
appears to form an upper bound, as long as the pseudo-hard-sphere approximation is
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applicable. We can also conjecture that bounds that apply rigorously to fermionic point
processes will also be valid for stealthy systems [31]:

GV(r) � 1, (73)

EV(r) � e−ρv1(r) (74)

Once again, comparison to simulations suggests that this is indeed the case (figure 3).
Note that formulas for HV/P(r) derived from these bounds do not bound HV/P(r), which
can be seen in figure 3.

It would be of great interest to be able to prove these bounds. The right-hand side of
relation (74) has a simple physical interpretation, which is the void exclusion probability
of a Poisson point process [73]. Thus, our conjecture is that the void exclusion probability
of a stealthy point process is bounded above by that of a Poisson point process, aligning
with physical intuition that these processes do not tolerate large holes despite their
disorder.

3.3. 2D results

In two dimensions, it is generally harder to obtain results in the pseudo-hard-sphere
approximation due to the lack of exact hard-disk results. We can still use the low-χ
expansion given in equation (66), but we must numerically invert to obtain g2(r). We
plot the result of using this numerical g2(r) to evaluate the bounds in figure 4.

An accurate expression for the direct correlation function of 2D circular hard disks
is given by Baus and Colot [80]. They begin with the low-density expansion for the
direct correlation function, and make the ansatz that it describes the direct correlation
function for all fluid densities so long that one uses the appropriate scaling factor. The
relevant result is that we can take the Fourier transform of the direct correlation function
of the stealthy system as

C̃(k) = − ∂

∂η
[ηz(η)]

(
1− u2η + u2ηα

(
k

u
,
K

2

))
, (75)

where z(η) = pv1(K/2)/ηkBT is the compressibility factor of the corresponding hard-
disk system and u is determined by the transcendental equation

2

π

(
u2(u2 − 4)sin−1

(
1

u

)
− (u2 + 2)

√
u2 − 1

)
=

1

η2

(
1− 4η −

[
∂

∂η
ηz(η)

]−1
)
. (76)

To complete this description, one must specify the compressibility factor z(η). We use
the following second-order expression from [65, 80]:

z(η) =
1 + 7π−12

√
3

3π
η2

(1− η)2
, (77)

which is accurate over the relevant hard disk packing fractions. Then, we combine
equations (67) and (75) and take the Fourier inversion numerically to determine g2(r)
for our stealthy systems. We plot the result of using this g2(r) in the approximations
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Figure 4. Bounds and approximations for the nearest-neighbor functions based on
the pseudo-hard sphere approximation for 2D stealthy systems. (a), (b) GV(r) for
a system at χ = 0.10 and 0.33, respectively. (c), (d) GP(r) for a system at χ = 0.10
and 0.33, respectively.

given in section 2 in figure 4. We see that the qualitative picture is similar to the 1D
case.

We can use the preceding approximation for g2(r) to obtain the a coefficient used in
the low-r series for the nearest-neighbor functions. Taking K = 1, we find that

a = 1− U
(
η
((
7π − 12

√
3
)
(η − 3)η − 3π

)
− 3π

)
24π3(η − 1)3

, (78)

where

U =
(u2 + 2)

(
−
√
u2 − 1

)
η + (u2 − 4)u2 η csc−1(u) + 2π

2η(η((7π−12
√
3)(η−3)η−3π)−3π)ρ((u2+2)(−

√
u2−1)η+(u2−4)u2 η csc−1(u)+2π)

3π2(η−1)3
+ ρ

. (79)
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Figure 5. Bounds and approximations to the nearest-neighbor functions based on
the pseudo-hard-sphere approximation for 3D stealthy ensembles. (a) Void functions
for χ = 0.10. (b) Void functions for χ = 0.33. (c) Particle functions for χ = 0.10.
(d) Particle functions for χ = 0.33.

3.4. 3D results

Since we do not have an exact expression for g2(r) in 3D, we once again begin with
the low-χ expansion for S(k) in equation (66). We compute the Fourier inverse of this
equation analytically, and use it to evaluate the bounds of section 2 numerically. This
is compared with simulation data in figure 5.

A more accurate approximation is obtained using the Percus–Yevick approximation
for gHS

2 (r). This gives [16]

C̃(k) ≈ Θ(K − k)

(
−a1 − 6ηa2

k

K
− ηa1

2

(
k

K

)3
)
, (80)

where a1 = (1 + 2η)2/(1− η)4 and a2 = −(1 + η/2)2/(1− η)4. We follow the same steps
as for the 1D case with an exact g2(r), and compare the results to simulation in figure 5.
We find qualitatively similar trends to the 1D and 2D cases.
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Figure 6. A comparison of the prediction for a(χ) from pseudo-hard-sphere theory
to values estimated from simulation. The value of a is obtained by using a quadratic
extrapolation on a numerically measured g2(r). Data for two and three dimensions
were obtained from high quality pre-existing simulations on small systems reported
in [12]. (a) A comparison for 1D. As the low-χ approximation and exact solution
of the pseudo-hard-sphere ansatz give the same a, we only show one curve. (b) A
comparison for 2D. We include predictions based on the low-χ approximation and
the Baus–Colot approximation. (c) A comparison for 3D. We include predictions
based on the low-χ approximation and the Percus–Yevick approximation.

Using a similar argument to the 1D case, we find that the low-r expansion using
the PY approximation to the pseudo-hard-sphere scheme [16], taking K = 1, is, given
in terms of the coefficients for equation (33):

a =
625− 2750χ+ 775χ2 − 300χ3 + 30χ4

25(5 + 4χ)2
, (81)

and

b =
3(200χ− 55χ2 + 8χ3)(625− 1000χ+ 600χ2 − 160χ3 + 16χ4)

1000(5 + 4χ)4
. (82)

3.5. Extension to larger χ

While the pseudo-hard sphere approximation breaks down well before the order–disorder
transition at χ = 0.5, it is still possible to derive useful results from this approximation
all the way up to the transition point. The basic observation is that while the functional
form of the pair correlation function differs from the pseudo-hard-sphere approximation
above χ ≈ 0.15 [41], the value of g2(0), and thus the coefficient a that determines the
leading order contribution to the nearest-neighbor functions, can be well modeled using
a simple extension of this theory. In figure 6, we compare the analytical results for a(χ)
given in the preceding sections to both our simulation data and data reported in [12].
For the 1D case, the pseudo-hard-sphere result becomes steadily worse as χ increases,
but, as we will see in section 6, this result can still be used to form a useful theory of the
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void functions. For the case of 2 and 3 dimensions, we see that the analytical prediction
for a(χ) works very well until it crosses zero and becomes negative. In figure 6, we only
report simulation data with a non-zero value of a, as our method of obtaining a relies
on a quadratic extrapolation that becomes invalid when χ becomes large. However, for
our particular collection of finite configurations at large χ, we observe g2(r) = 0 for an
entire range of r near origin. Thus, one can obtain a useful analytical approximation
by setting a(χ) through the pseudo-hard-sphere approximation up to the zero crossing,
and setting it to zero thereafter.

4. Inclusion of higher-order information

In the previous section, the results were derived using only the one and two-point
correlation functions. However, as can be seen in series such as equation (23), the nearest-
neighbor functions in principle depend on the n-point correlation functions gn(r

n) up to
arbitrary order in the infinite system size limit. In this section, we will discuss conditions
under which series of this nature can be truncated using the bounded holes property, so
that EV(r) is determined by a finite number of terms in equation (23). This discussion
also applies to single finite configurations using the series (24), in which case the key
observation is that the series can be truncated far before the last vintN (rN ) term.

The bounded holes property plays a fundamental role in the truncation of this series.
This can be seen in the following way. If one has a condition that prevents arbitrary
clustering of points, such as a requirement to be a packing [64], one can show that the
series in equation (23) must terminate after a finite number of terms for any given value
of r. The bounded holes property lets us then extend this observation to show truncation
of the series for EV(r) at all r, with an r-independent number of terms. Since the number
of necessary terms to keep generally grows with the value of r considered, the existence
of a critical-hole size rc allows us to compute the number of terms needed by finding the
number of terms needed to evaluate EV(rc). Thus, the preceding argument shows that
the series (23) must terminate for any packing with the bounded hole size property. This
argument has been used to show the truncation of the series (24) for all crystals [64],
but we note that it applies equally to the series (23) for random sequential addition at
saturation.

We can also show the truncation property for the case of stealthy point processes. To
do this, we use the anti-concentration property proved in [35]. This states that for a box
of side length C/K, the number of particles in the box is bounded above by C ′ρ/Kd,
where C and C ′ are generic constants [35]. Since stealthy systems have bounded hole
sizes, it is once again sufficient to consider EV(rc). Since we have the strict upper bound
on the number of particles in a large enough box, we can also bound the maximum
number of particles contained in the decorated sphere surrounding each particle in the
geometric interpretation given in figure 2. Thus, the series must terminate after a finite
number of terms. Note, however, that the number of terms that we may need to consider
in the series expansion (23) increases with decreasing χ.

This last observation raises an interesting fundamental question concerning the num-
ber of terms of equation (23) needed to describe a stealthy system. While we are not
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Figure 7. Clusters used to determine the highest order in the series (23) needed
to evaluate EV(r) for the corresponding point process. (a) The least dense cluster
of two particles for a one-dimensional saturated RSA process with particles of unit
diameter. (b) The densest cluster of four particles for the same RSA process. (c)
One of the degenerate least dense clusters of four particles for the one-dimensional
perturbed lattice described in the text. The open circles represent the underlying
lattice locations, while the filled circles represent the points of the configuration.
(d) The one of the degenerate least dense clusters of four particles for the same
perturbed lattice.

aware of a method to solve this problem analytically for disordered stealthy systems, we
present analytical solutions for two interesting systems with the bounded holes property:
the case of one-dimensional random sequential addition at saturation and a specific
one-dimensional perturbed lattice.

For 1D random sequential addition at saturation, the truncation property is estab-
lished by the previous general principle concerning packings. One can find that the
series truncates at the g2(r) term by considering the two local configurations of four
particles (or clusters) given in figure 7. We will take the diameter of the spheres to be
unity. The first cluster shows that rc = 1 in this system, since starting at a separation of
two, one can insert another particle between the neighbors, contradicting the saturation
assertion. The second cluster represents the densest cluster possible while respecting the
packing condition. Overlaying the covering spheres as in figure 2 readily shows that one
only needs to consider up to intersections of two covering spheres, which corresponds to
the g2(r) term.

The perturbed lattice we will consider is a one-dimensional lattice of unit spacing
where the points (indexed by i) are displaced by independent random variables δi are
independently drawn from an arbitrary distribution with compact support over [−Δ,Δ].
We further restrict 0 < Δ < 1/2, to prevent transposition of particles. It is interesting to
note that this system is hyperuniform [81], but not stealthy hyperuniform. One should
also be aware that this is very specific case of a perturbed lattice; in general, one can have
correlations between the δi or unbounded displacement distributions [81]. The series (23)
truncates by virtue of this system being a packing with a bounded hole size. One can
see this by considering figure 7. The first cluster shows that rc = (1 + 2Δ)/2, while the
second cluster shows that the system can be considered a packing, since there is always
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Table 1. A table containing the highest order necessary
to evaluate EV(r) through the series (24) for 1D stealthy
systems at various χ.

χ Highest order in series (24)

0.050 16
0.10 10
0.20 6
0.30 5
0.33 4

a gap of 1− 2Δ between the particles. These clusters also show that the number of
terms needed is dependent on Δ. For Δ ∈ (0, 1/4], one only needs up through the g2(r)
term, however, for Δ ∈ (1/4, 1/2), one requires the addition of the third order term.

The number of terms needed for stealthy systems in the series (24) can be determined
numerically. While this is computationally expensive in two and higher dimensions,
it can be determined in an efficient manner in one dimension by using the fact the
intersection volume of n 1D spheres can be written as the intersection volume of the two
spheres farthest apart in the collection. The interested reader can refer to the appendix
A for details. We have reported the highest order needed for our simulated 1D stealthy
systems in table 1. We see that the number of terms needed increases with decreasing
χ, as predicted from the general argument above. We expect this trend to continue in
higher dimensions.

5. Behavior on approach to critical-hole size

One of the surprising yet fundamental properties of any stealthy system is a bounded
hole size [5, 35]. This in turn implies that EV(r) and HV(r) have compact support and
that GV(r) diverges as it approaches the critical-hole size. We investigate the asymptotic
behavior of the nearest-neighbor functions as they approach this maximum hole size,
using simple theoretical arguments and computer simulations as our primary tools.

5.1. Fundamental considerations

It is useful to generally classify the asymptotic behavior of the nearest-neighbor functions
as they approach the critical-hole size. One begins with the study of crystals, which are
both trivially stealthy due to the presence of Bragg peaks and have a trivially bounded
hole size which is found by identifying the location of the ‘deep holes’ in the crystal [78].
In this case, the hole probability function decays to zero as a power law [64]

EV(r) ∼ C(rc − r)γ (r → r−c ), (83)

where γ is a positive exponent. It is possible to compute the exponent of this power law
analytically in the case of a crystal, and it takes the value γ = d for spatial dimension d
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Figure 8. A schematic of Voronoi cells and spherical covering areas that demon-
strates that the EV(r) of a crystalline system decays as a power-law with exponent
γ = d close to the critical-hole size. A crystal has a finite number of distinct Voronoi
cells, and thus there exists a gap between the set of vertices at a distance rc and the
next farthest set of vertices. Thus, we can conclude the proposed behavior through
considering the decrease in volume of a small uncovered corner.

[64]. To see this, note that there are a finite number of distinct Voronoi cells (figure 8),
so we can always find the set of deepest holes in the system, and no other hole will be
infinitesimally close to being as deep. In the intepretation of EV(r) as the ratio of the
uncovered volume to the total volume (figure 2), the uncovered volume around these
holes will vanish according to a power law consistent with the dimension of the sys-
tem as the covered radius grows larger. In practice, this characteristic γ = d power-law
decay is most easily observed in systems with high degrees of crystallographic symme-
try. Examples include lattices and crystals with only a few particles in the basis such
as the hexagonal close-packed crystal. As the number of particles in the smallest basis
increases, the domain in which this power law is guaranteed to be found shrinks, and
disappears as the basis grows to infinity.

The asympotic form (83) then implies

HV(r) ∼ γC(rc − r)γ−1 (r → r−c ) (84)

GV(r) ∼
γ

ρs1(r)(rc − r)
(r → r−c ). (85)

The behavior of GV(r) is particularly interesting, as it diverges with a pole of order
one. For the case of the disordered stealthy systems studied here, it is a reflection
of the fact that we are taking the limit T → 0 while the pressure remains positive
[37] (equation (13)). We can visualize the near-rc behavior of these functions easily by
plotting 1/GV(r) (figure 9). We see that a linear decay of 1/GV(r) with a specified
relation between the slope to the zero crossing is expected for a crystal.

However, in the disordered case, we find that the exponent is typically not given
by γ = d. One in general expects to find a larger value, implying that the holes vanish
more quickly as one approaches rc, and we first give an intuitive argument for this fact.
Since the number of distinct Voronoi cells is infinite in the general disordered case, it is
possible to have a continuum of vertices with distances close to rc. While the deepest
hole in each cell still closes with the characteristic γ = d power-law decay, the fraction
of uncovered holes is also decreasing as one gets closer to rc. This is in contrast with
the crystalline case, where the gap between the farthest and next-to-farthest vertex
ensures that this fraction is constant. Thus, we expect the hole probability to reach zero
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Figure 9. The nearest-neighbor functions for a square lattice. We can see thatEV(r)
and HV(r) have compact support, which we know is guaranteed by stealthiness.
(a) The void exclusion probability decays with a power law with exponent γ = 2.
(b) The previous behavior of EV(r) implies a linear decay of HV(r). (c) We see
that GV(r) diverges with a pole of order one. (d) By plotting 1/GV(r), we can
ascertain the asymptotic behavior of the other functions by the slope of the linear
zero-crossing.

asymptotically faster in the case of a disordered system, since one is both covering up
volume and decreasing the fraction of cells in which there are uncovered holes near rc.

While we are not aware of a method to compute the exponent γ analytically in the
case of a disordered stealthy system, we will work through the two examples of non-
stealthy systems with bounded holes introduced in section 4, and verify that γ > d. In
the case of a one-dimensional random sequential addition process at saturation, one has
that the void exclusion probability assuming spheres of unit diameter is given by [46]

EV(r) = 1− 2(1− r)

∫ ∞

0

H(t)

t2
dt− 2

∫ ∞

0

H(t)

t3
[
1− e−(2r−1)t

]
dt, (86)

where

H(t) = e−2[γe−Ei(−t)], (87)

where γe is Euler’s constant and Ei(t) is the exponential integral. We then expand the
exponential in the second integrand around r = 1 and find

EV(r) ∼ 4(1− r)2
∫ ∞

0

H(t)e−t

t
dt+ · · · (r → 1−), (88)

where we have crucially used the fact that
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0

H(t)

t2
dt = 2

∫ ∞

0

H(t)e−t

t2
dt, (89)

which can be shown by integration by parts. Thus, for this one-dimensional disordered
process, the exponent γ has increased to γ = d+ 1. One interesting but currently unre-
solved question is whether the formula γ = d+ 1 holds for saturated RSA processes in
all dimensions.

The approach implicitly used above by taking results from [46] is also of fundamental
theoretical interest. Thus, we will now describe it in some detail, and derive new general
results concerning the near-rc behavior of the functions involved. In one dimension, we
analyze systems by introducing the gap distribution function p(z), which gives the prob-
ability density to observe a gap with length between z and z + dz between neighboring
particles [31]. Since one can relate [31, 46]

EV(r) = ρ

∫ ∞

2r

p(z)(z − 2r) dz, (90)

one can derive the near-rc behavior of p(z) for systems with bounded holes by expanding
around r = rc:

EV(r) = 2ρp(2rc)(rc − r)2 +
4ρ

3

d

dz
p(z)|z=2rc

(rc − r)3 + · · · . (91)

From this expansion, it is seen that if EV(r) decays with a power law with exponent
γ = n as r → rc, then p(z) decays as a power law with exponent γ = n− 2 as z → 2rc.

We apply this observation to determine the asymptotic behavior of the 1D perturbed
lattice considered in section 4, given a specific form of the displacement distribution. As
a concrete example, we consider a uniform displacement distribution. By using the fact
that the gap between particles i and i+ 1 can be written in terms of the displacement
variables of section 4 as z = 1− δi + δi+1, and that the distribution of the sum of inde-
pendent random variables is the convolution of their individual distributions [82], one
can verify that the gap distribution of this system is that given in figure 10. Upon insert-
ing this form of p(z) into equation (90) and expanding around r = rc = (1 + 2Δ)/2, we
find that

EV(r) ∼
(rc − r)3

3Δ2 (r → r−c ). (92)

Thus, this 1D system has a power-law decay of EV(r) with exponent γ = d+ 2. How-
ever, we emphasize that this system is a special type of perturbed lattice, with a specific
bounded displacement distribution and uncorrelated displacements. It is clear from
equation (91) that one can obtain any γ � 2 by specifying the asymptotic behavior of
p(z), but it would be interesting to also determine whether adding correlations between
displacements or going to higher spatial dimensions would change the result.

While a divergence of GV(r) is a generic feature of stealthy systems, the behavior
may not be that of a pole of order one, an intriguing possibility which we will use
in section 6. Consider the intuitive argument for the increase of the exponent γ. In
principle, one can have that the hole probability function decays faster than any power
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Figure 10. The gap distribution function p(z) for the one-dimensional perturbed
lattice described in the text.

law. One simple functional form that exhibits this asymptotic behavior is [83]:

EV(r) ∼ C exp

(
− ζ

rc − r
+ · · ·

)
(r → rc), (93)

giving rise to the following asymptotic forms for HV(r) and GV(r):

HV(r) ∼
(

ζC

(rc − r)2
+ · · ·

)
exp

(
− ζ

rc − r
+ · · ·

)
(r → rc) (94)

GV(r) ∼
ζ

ρs1(r)(rc − r)2
+ · · · (r → rc). (95)

This behavior gives a divergent GV(r) with a pole of order two. In general, a pole of
any order would be permissible, but we only explicitly consider the order two case. If
we consider instead the reciprocal function 1/GV(r), we see that a quadratic (or any
higher order) decay is associated with an EV(r) that decays faster than any crystal on
approach to the critical-hole size. It is possible to specify a specific distribution for the
1D perturbed lattice considered previously that can be shown to possess an EV(r) that
decays faster than any power law, although we have not been able to compute the exact
form of equation (95). One takes the displacement distribution u(δ) as

u(δ) =
1

I
exp

(
1

δ2 −Δ2

)
−Δ < δ < Δ, (96)

and zero elsewhere, where I is the normalization constant needed to create a well-defined
probability density function. One can then verify through judicious replacements of
pieces of the convolution integrand for p(z) by constants that form upper bounds that
p(z) decays faster than any power law as z → 2rc. This implies through equation (91)
that EV(r) also decays faster than any power law, since the coefficient for each term
in the series will be zero [83, 84]. However, the use of these coarse upper bounds in
the argument prevents us from extracting the exact asymptotic behavior. It would be
interesting to identify a system for which a form of GV(r) with a higher-order pole could
be exactly computed.

Given the fundamental importance of the near-rc behavior described above, it is
essential to develop intuition for the case of stealthy systems. Since we currently lack
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Figure 11. Simulations of 1/GV(r) for the first three spatial dimensions. See
appendix A for details on system and ensemble size. (a) Simulations for 1D. (b)
Simulations for 2D. (c) Simulations for 3D.

strong enough direct theoretical tools, we provide some preliminary data via computer
simulations that contextualizes these simple arguments.

5.2. Simulation results

Here, we present simulation results for GV(r) in 1, 2, and 3 dimensions (figure 11). We
sample GV(r) through a geometric method in 1D and by binning the nearest neighbors in
2D and 3D; see appendix A for details. While the obtained statistics are not good enough
to draw robust conclusions, in two and three dimensions, we can see the beginning of
a cross-over in the form of a decreased slope for 1/GV(r) on the larger-χ samples. This
suggests that EV(r) for these configurations will either have power-law tails with large
values of γ, or that they will have an EV(r) that decays faster than any power law. In
one dimension, the behavior at higher-χ is somewhat more complicated, with a plateau
forming at χ = 0.20 and disappearing in the χ = 0.33 data. This disappearance is likely
due to a subtle finite size error, where crystallization is enhanced close to the χ =
1/3 order–disorder transition that exists in the thermodynamic limit [38]. Indeed, we
observe that a small amount of long-order develops in the form of apparently persistent
oscillations in the pair correlation function for our χ = 0.33 data. However, we still report
these curves throughout the article, since we expect this error to be much less noticeable
both in GV(r) far from the critical-hole size and in the less sensitive quantities EV(r)
and HV(r). We observe that the likely behavior close to rc for EV(r) is a power-law
decay, however, this does not necessarily imply that this is the case for all dimensions.
Whether the true asympotics for EV(r) are power-law decays or not, these results suggest
that while both crystals and disordered stealthy systems have bounded hole sizes, the
functions HV(r) and EV(r) of disordered systems approach their asymptotic value much
more quickly as one moves toward the critical-hole size.

This observation explains why it is extremely difficult to sample the near-rc behav-
ior for disordered stealthy systems. Since EV(r) vanishes as the critical-hole size is
approached, the faster decay implies that for any finite configuration, the event of
observing a hole with size sufficiently close to the critical-hole size is rarer than that of
a crystalline system. Thus, one needs to sample much larger systems, unlike in the case
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of a crystal, for which a single copy of the fundamental cell suffices. This observation is
also closely linked to one made by Zhang et al [5], which is that it is easier to observe
large holes for χ close to 1/2 than for smaller χ, since the relative lack of close-range
order for small χ implies that the event of finding a large hole becomes correspondingly
rarer.

6. Toward accurate expressions for nearest-neighbor functions over the whole
domain

We now devise an approximation that matches the contributions to the small-r and near-
rc expressions discussed above. The basic strategy is to make a change of asymptotic
scale on the small-r asymptotic expansion for GV(r) given in equation (48) so that it
matches either the pole-of-order-one asymptotics of equation (85) that gives rise to a
power law decay of EV(r) or the pole-of-order-two asymptotics of equation (95) that
gives rise to an exponential decay of EV(r) as r approaches rc. While there are many
ways of doing this, one fruitful choice is to take either the pole-of-order-one formula:

GV(r) = 1 +
(1− a)v1(rc)ρv1(r)

v1(rc)− v1(r)
, (97)

or the pole-of-order-two

GV(r) = 1 +
(1− a)v1(rc)

2 ρv1(r)

[v1(rc)− v1(r)]2
, (98)

where the maximal hole size rc is given by the formula [5]:

rc =
(d+ 1)π

2K
. (99)

In addition to connecting behaviors consistent with the small-r expansions given in
section 3 and our observations concerning the close-to-critical-hole-size regime presented
in section 5, we believe they satisfy the bounds given by the inequalities (44) and (45)
(although we have not constructed a rigorous proof of this proposition). They have been
compared to simulation data forGV(r) and lV in figure 12. We can see that in one and two
dimensions, the pole-of-order-two formula (98) is more accurate, with good agreement
at low-χ and tolerable agreement at intermediate χ. While this formula gives different
asymptotics than is apparent in the data for 1/GV(r) for the 1D system at χ = 0.30
given in figure 11, this is likely balanced by lessening the error at smaller r, which
dominates the contribution to lV. In three dimensions, the two formulas give similar
predictions, with the more accurate approximation being determined by the value of χ.
We also see that the prediction for lV qualitatively breaks down past a certain χ, where
we believe higher-order coefficients such as b must be included.
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Figure 12. Comparisons between simulations and the theories given in
equations (97) and (98), which correspond to the linear ansatz and the quadratic
ansatz in the figure legends, respectively. (a)–(c) 1/GV(r) for two different val-
ues of χ in one, two, and three dimensions, respectively. (d)–(f) The void mean
nearest-neighbor distance lV as a function of χ for one, two, and three dimensions,
respectively.

7. Positive temperature

For sufficiently small temperatures, we have that the pressure of a stealthy system is
expliclitly given by [37]

p ∼ ρT +
ρ2v0
2

. (100)

From equation (13), we then have a prediction for the asympotic value of GV as (taking
ρ = 1):

GV(r →∞) ∼ 1 +
1

2T
. (101)

Note that this formula implies that there will be a singular change in behavior of holes
in the system as one increases the temperature, even infinitesimally, from T = 0. The
presence of a finite asymptote suggests that one can in principle expend an arbitrarily
large amount of work to create an arbitrarily large hole. Thus, since this system is
in equilibrium, the maximum hole size will be unbounded in the infinite volume limit
at positive temperature. This is in stark contrast to the ground state behavior, where
equation (101) does not apply due to the presence of the divergence. This divergence is
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Figure 13. The function GV(r) sampled at positive temperatures for (a) a 2D
ensemble at χ = 0.10 and (b) a 3D ensemble at χ = 0.49, as well as the saturating
values predicted by equation (101).

ultimately derived from the fact that the relation between GV(r) and the work required
to produce a hole becomes singular at T = 0 [47].

We have plotted the results of simulations at positive temperatures for GV(r) in
figure 13. However, none of these cases definitively asymptote to the predicted value
before the simulated data becomes very imprecise. We are unsure whether this discrep-
ancy is caused by the difficulty of sampling GV(r) at large r and positive T , or whether
the linear approximation (100) simply breaks down. We can also see that for some values
of χ and T , the behavior of GV(r) can become non-monotonic.

8. Conclusions and discussion

In summary, we have obtained bounds and approximations to the nearest-neighbor func-
tions valid in the small-r and χ regimes through the use of the pseudo-hard-sphere
ansatz, formally advanced a pair of conjectured bounds, showed that the nearest-
neighbor functions of stealthy systems can be determined by a finite number of gn(r

n),
investigated the close-to-critical-hole-size regime through theoretical arguments and sim-
ulation, and combined insights from these analyses to form an approximation valid for
small χ and all r. We showed that disordered stealthy processes appear to possess dif-
ferent behavior from their ordered counterparts as they approach their critical-hole size.
Finally, we have given the asymptotic behavior of GV(r) for finite temperature systems,
and concluded that we expect stealthy systems to lose their bounded hole size property,
even at arbitrarily small temperatures.

These results both answer fundamental questions about the statistical properties
of stealthy hyperuniform systems and raise new avenues of inquiry. They suggest that
the asysmptotic behavior of the nearest-neighbor functions near the critical-hole size
is different for ordered and disordered stealthy systems, but obtaining more complete
evidence in favor of this proposition will likely require the development of new methods
for the investigation of stealthy systems. This may either take the form of numerical
methods to sample large holes or increase the efficiency in which these unusual potentials
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can be simulated, or theoretical methods to directly obtain the asymptotic behavior.
In addition, the singular disappearance of a bounded hole size at positive temperature
further incentivizes studies of the positive temperature regime, as one may find other
unusual statistical characteristics of these systems.

In addition to the implications for these systems as point processes, those results
which apply at intermediate χ can also be used to comment on the structure of disordered
packings of intermediate density, as any finite stealthy system can be decorated with
spheres whose diameter depends on χ to obtain a packing. Considered as two-phase
systems, these packings are also stealthy hyperuniform [12].

Having outlined methods for obtaining good analytical approximations to these
functions, we can then investigate applications to the field of heterogenous materials.
Accurate expressions for the nearest neighbor functions can be used to place bounds on
or estimate the trapping constant [65, 67–69] and fluid permeability [65] of two-phase
systems derived from these point processes. These bounds may find use in identifying
applications for stealthy processes in materials engineering.
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Appendix A. Simulation details

In this appendix, we give details on the numerical methods used to produce results in
this article, with the exception of the two and three dimensional results given in figure 6,
which is partially based on a resampling of data presented in [12].

A.1. Collective coordinate procedure

The collective coordinate procedure in the version of the code we used is similar to the
one developed in [41], but with a few minor, previously unreported differences. One
such modification is that the the time step choice algorithm and general structure of the
program has been changed. The time step is still adjusted based on the log-ratio of the
energy between snapshots, but the threshold depends on the total number of snapshots
N snap taken. Denote the number of steps between samples to be N step. During the initial
time step choice and equilibration phase, one first evolves the system N step/2 steps, and
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Table A.1. A table containing simulation parameters for systems used throughout
article. The figure numbers prefixed with a T refer to tables and those prefixed with
an S refer to the supplementary material.

d χ figs. N N snap N step N eq unit cell

1 0.0499 T1, 6, 11, 12 9300 500 5000 200 integer lattice
1 0.100 02 T1, 3, 6, 11, 12 6600 500 5000 200 integer lattice
1 0.1998 T1, 6, 11, 12 4600 500 5000 200 integer lattice
1 0.2998 T1, 6, 11, 12 3800 500 5000 200 integer lattice
1 0.3301 T1, 3, 6, 11, 12 3600 500 5000 200 integer lattice
2 0.0502 6, 11, 12, S3 9300 500 5000 200 triangular lattice
2 0.1002 4, 6, 11, 12, S3, S4 6600 500 5000 200 triangular lattice
2 0.201 6, 11, 12, S3 4600 500 5000 200 triangular lattice
2 0.3301 4, 6, 11, 12, S3, S4 3600 500 5000 200 triangular lattice
3 0.519 11, 12 9300 500 5000 200 BCC lattice
3 0.101 5, 11, 12, S1, S2 6600 500 5000 200 BCC lattice
3 0.207 11, 12 4600 500 5000 200 BCC lattice
3 0.331 5, 11, 12 3600 500 5000 200 BCC lattice
3 0.492 11, 12 3000 500 5000 200 BCC lattice
2 0.101 13 6600 300 5000 200 square lattice
3 0.491 13 2000 200 5000 600 cubic lattice

then adjusts the timestep by sending

Δt→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5Δt E > 0.0005/Nsnap

0.9Δt 0.0005/Nsnap � E > 0.0003/Nsnap

0.95Δt 0.0003/Nsnap � E > 0.0002/Nsnap

1.2Δt E < 0.000 001/Nsnap

1.05Δt 0.000 001/Nsnap � E < 0.000 05/Nsnap

Δt otherwise,

(A.1)

where

E =

∣∣∣∣2 ln(Ei/Ei+1)

Nstep

∣∣∣∣ . (A.2)

Then, one repeats the above N eq times. Afterward, one evolves the system for N step/2
using an Andersen thermostat and N step/2 without an Andersen thermostat, and takes
a snapshot at the end with the L-BFGS algorithm (for ground states). One repeats this
N snap times.

We have justified the aforementioned change through a blocking analysis, where we
have observed that upon splitting each trajectory into five equal portions sequentially,
the value of g2(r) observed in each sub-trajectory is similar. Whenever an uncertainty for
g2(r) was necessary (e.g. in the extrapolation to obtain the numerical a coefficient) it is
estimated by assuming each snapshot contributes independently to the final value. This
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independence assumption was corroborated by a standard block uncertainty analysis
[85]. In three dimensions, we occasionally drop the first bin of g2(r) because no counts
are recorded, even though the likely value of g2(r) is not zero. This is likely a finite size
effect.

We also deviate from previous studies in that we conduct our simulations at ρ = 1
rather than K = 1. This has important implications for the choice of temperature used
to equilibrate the system before taking snapshots. While we use the same values as [41]
(T = 2× 10−4, 2× 10−6, and 1× 10−6 for one, two, and three dimensions, respectively),
it should be noted that this choice actually corresponds to physically distinct systems,
since changing the density changes how far the particles need to move to obtain the same
difference in energy. We have justified this choice by also simulating at temperatures at
least one order of magnitude below those stated above, although due to equilibration
issues, these lower temperature simulations may have effectively fewer snapshots or slight
biases due to non-equilibration. We observe that g2(r) hardly changes when simulated
with this lower equilibration temperature.

In general, we work with larger systems that have been equilibrated for a shorter
amount of time and with fewer snapshots than the corresponding work in [5, 12, 37, 41,
42]. The values of the system size N , N snap, N step, and N eq along with the shape of the
unit cell of each system and a specification of which figures the data is used in, is given
in table A.1.

Throughout the article, we have used the rounded values of χ appearing in the figures
to compute theoretical curves. Due to the finite size effects implicit in equation (63), one
cannot obtain exactly these values of χ with our chosen system sizes. Instead, we use a
relatively close value of χ, which rounds correctly to two significant figures. To give an
idea of how much error is made when making this choice, we have reported the values
of χ to the next non-trivial significant figure in table A.1. Figures where χ appears as
the bottom axis use more precise estimates of χ.

A.2. Sampling the nearest-neighbor functions

For the void quantities in one dimension, we use the fact that EV(r) is the ratio of
uncovered space to total space in figure 2 and that HV(r) is the surface area of the
covered space [44]. This has been used previously to compute accurate results in two and
three dimensions [55–57]. For the purposes of this article, we note that this interpretation
gives rise to a simple method in 1D. In particular, we can sample the nearest neighbor
function by simply compiling a list of all the gap sizes in the system, and computing
the uncovered length of these gaps at each r. To ensure a meaningful estimate of the
uncertainty in our calculation, we drop any r for which fewer than 10 individual gaps
contribute. The uncertainty for HV(r) and EV(r) are then computed as the standard
deviation of the mean with the value from each snapshot being treated as independent.
GV(r) is computed as the ratio, and the uncertainty propagated linearly.

For the void functions in two and three dimensions and the particle functions in all
dimensions, we use a sampling strategy similar to that of [48]. One computes the func-
tion HV/P(r) through binning nearest neighbor observations, the function EV/P(r) by
recording every observation where the nearest neighbor is at least r away, and GV/P(r)
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by taking their ratio. Since this method involves estimating a sensitive statistical quan-
tity through a quotient, care must be taken to reduce systematic error. To this end,
we compute these quantities using multiple bin sizes, and compare them to ensure that
we have obtained a stationary estimate with respect to bin size. To ensure a mean-
ingful estimate of the uncertainty in our calculation, we drop any bin for which fewer
than 10 observations contribute to HV(r). Uncertainties for HV(r) and EV(r) are com-
puted by assuming each snapshot contributes independently to the final value, and the
uncertainty for GV(r) is propagated through the ratio linearly.

We also sample EV(r) via the series (24) in 1D for the purpose of determining how
many terms in the series is needed. To do this, we use the fact that vintn (rn) is just vint2 (r),
where r is taken as the distance between the two points farthest apart. Thus, we can
compute the series for EV(r) to arbitrary order as follows: first, compute all of the pair
distances up to r and the number of particles m contained between the pair, and then
compute the contribution of the pairs according to the formula

Eij
V(r) =

m∑
k=0

(−1)k
(m
k

)
vint2 (rij). (A.3)

Finally, one sums the contribution of all pairs to obtain EV(r). The highest order needed
is then mc + 2, where mc is the highest m value observed in the calculation for EV(rc).
The value of rc is determined by looking for a large drop in EV(r), as past rc, the value
of EV(r) is very close to zero. This drop is typically many orders of magnitude.
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